if x+y+z=9 and xy+yz+zx=23 the value of x^3+y^3+z^3-3xyz is plzzz fast
Answers
Answered by
10
Here's your answer !!
__________________________
We know that,
So,
By putting value of (2) and (3) in equation (1), we get :-
Hence,
__________________________
Hope it helps you !! :)
__________________________
We know that,
So,
By putting value of (2) and (3) in equation (1), we get :-
Hence,
__________________________
Hope it helps you !! :)
chandalasrilakshmi:
thank you so much
Answered by
7
◀️◀️HEY MATE!▶️▶️
➡️➡️HERE'S YOUR ANSWER!⬅️⬅️
-------------------------------------------------------------------------------------------------
since, x + y + z = 9
and, xy + yz + zx = 23
so, firstly, squaring both side ,
( x + y + z )² = (9)²
=> x² + y² + z² + 2(xy + yz + zx) = 81 ....(using identity)
=> x² + y² + z² + 2(23) = 81
=> x² + y² + z² + 46 = 81
=> x² + y² + z² = 81 - 46
=> x² + y² + z² = 35 ......(i)
Now, by using identity,
x³ + y³ + z³ - 3xyz = ( x+y+z ) (x² + y² + z² - xy - yz - zx)
( substituting the value of x² + y² + z² , from (i) )
x³ + y³ + z³ - 3xyz = (9) [35 - (xy + yz + zx )]
x³ + y³ + z³ - 3xyz = 9 ( 35-23 )
x³ + y³ + z³ - 3xyz = 9 × 12
x³ + y³ + z³ - 3xyz = 108 .....ANSWER
--------------------------------------------------------------------------------------------------------
HOPE IT WAS HELPFUL ✌️!
➡️➡️HERE'S YOUR ANSWER!⬅️⬅️
-------------------------------------------------------------------------------------------------
since, x + y + z = 9
and, xy + yz + zx = 23
so, firstly, squaring both side ,
( x + y + z )² = (9)²
=> x² + y² + z² + 2(xy + yz + zx) = 81 ....(using identity)
=> x² + y² + z² + 2(23) = 81
=> x² + y² + z² + 46 = 81
=> x² + y² + z² = 81 - 46
=> x² + y² + z² = 35 ......(i)
Now, by using identity,
x³ + y³ + z³ - 3xyz = ( x+y+z ) (x² + y² + z² - xy - yz - zx)
( substituting the value of x² + y² + z² , from (i) )
x³ + y³ + z³ - 3xyz = (9) [35 - (xy + yz + zx )]
x³ + y³ + z³ - 3xyz = 9 ( 35-23 )
x³ + y³ + z³ - 3xyz = 9 × 12
x³ + y³ + z³ - 3xyz = 108 .....ANSWER
--------------------------------------------------------------------------------------------------------
HOPE IT WAS HELPFUL ✌️!
Similar questions