If x+y+z=9 and xy+yz+zx = 24 , find the value of x2+y2+z2
Answers
Answered by
2
Step-by-step explanation:
x^2+y^2+z^2 = ?
Given
x+y+z= 9
xy+yz+xz= 24
we know that
(x+y+z)^2= x^2+y^2+z^2+2(xy+yz+xz)
= > (x+y+z)^2= (9)^2= 81
we have
81 = x^2+y^2+z^2+2(xy+yz+xz)
=> 81= x^2+y^2+z^2+2(24)
=> x^2+y^2+z^2= 81-48
=>x^2+y^2+z^2= 33
hope it helps ✌
Answered by
2
Given:
x + y + z = 9
xy + yz + zx = 24
To Find:
The value of x² + y² + z².
Solution:
- We know that the formula is given as:
(x + y + z)² = x² + y² + z² + 2 xy + 2 yz + 2 zx
⇒ (x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)
⇒ 9² = x² + y² + z² + 2 × 24
⇒ 81 = x² + y² + z² + 48
⇒ x² + y² + z² = 81 - 48
⇒ x² + y² + z² = 33
- So, the value of term (x² + y² + z²) is calculated as 33.
Similar questions