Math, asked by BrainlyShadow01, 10 months ago

If x + y + z = 9 and xy + yz + zx = 26. Then find x^3 + y^3+ z^3 - 3xyz =
please keep total answer step by step process If any another answer
l will report​

Answers

Answered by TheProphet
4

SOLUTION :

\underline{\bf{Given\::}}}}

  • x + y + z = 9
  • xy + yz + zx = 26

\underline{\bf{To\:find\::}}}}

  • x³ + y³ + z³ + -3xyz

\underline{\bf{Explanation\::}}}}

We know that formula;

\mapsto\boxed{\sf{x^{3} + y^{3} +z^{3} -3xyz=(x+y+z)(x^{2} +y^{2} +z^{2} -xy-yz-zx)}}}

\bigstar Firstly, this value get (x + y + z)²

\mapsto\sf{(x+y+z)^{2} =x^{2} +y^{2} +z^{2} +2(xy+yz+zx)}\\\\\mapsto\sf{x^{2} +y^{2} +z^{2} =(x+y+z)^{2} -2(xy+yz+zx)}

Putting the value of x² + y² + z² in formula of x³ + y³ + z³ - 3xyz, we get;

\mapsto\sf{(x^{3} +y^{3} +z^{3} -3xyz)=(x+y+z)[(x+y+z)^{2} -3(xy+yz+zx)]}\\\\\mapsto\sf{(x^{3} +y^{3} +z^{3} -3xyz)=9[(9)^{2} -3(26)]}\\\\\mapsto\sf{(x^{3} +y^{3} +z^{3} -3xyz)=9[81-78]}\\\\\mapsto\sf{(x^{3} +y^{3} +z^{3} -3xyz)=9\times 3}\\\\\mapsto\bf{(x^{3} +y^{3} +z^{3} -3xyz)=27}

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

1.

a³+b³+c³ - 3abc =(a+b+c)(a²+b²+c²-ab-bc-ca)

2.

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

Above two identity together gives

a³+b³+c³ - 3abc =(a+b+c) \{ \: (a + b + c)²  -  2ab  -  2bc  -  2ca \: -ab-bc-ca \}

 \implies \: a³+b³+c³ - 3abc =(a+b+c) \{ \: (a + b + c)²  -  3ab  -  3bc  -  3ca \:  \}

GIVEN

x + y + z = 9  \:  \: and \:  \:  xy + yz + zx = 26

TO DETERMINE

x^3 + y^3+ z^3 - 3xyz

CALCULATION

NOW

 \implies \: a³+b³+c³ - 3abc =(a+b+c) \{ \: (a + b + c)²  -  3(ab   + bc   + ca) \:  \}

gives

  \: x³+y³+z³ - 3xyz

=(x+y+z) \{ \: (x + y + z)²  -  3(xy   + yz   + zx) \:  \}

 = 9 \times ( {9}^{2}  - 3 \times 26)

 = 9 \times (81 - 78)

 = 9 \times 3

 = 27

Similar questions