if x+y=z and tanx=ktany, prove that sin z = [(k+1)+(k-1) sin]sin(x-y)
Answers
Answered by
50
tan x = k tan y
( sin x ) / ( cos x ) = k ( sin y ) / ( cos y )
( sin x cos y ) / ( cos x sin y ) = k / 1
( sin x cos y + cos x sin y ) / ( sin x cos y - cos x sin y ) = ( k + 1 ) / ( k - 1 )
[ sin (x+y) ] / [ sin (x-y) ] = ( k + 1 ) / ( k - 1 )
( k - 1 ) sin (x+y) = ( k + 1 ) sin (x-y) ...
hope it help u
( sin x ) / ( cos x ) = k ( sin y ) / ( cos y )
( sin x cos y ) / ( cos x sin y ) = k / 1
( sin x cos y + cos x sin y ) / ( sin x cos y - cos x sin y ) = ( k + 1 ) / ( k - 1 )
[ sin (x+y) ] / [ sin (x-y) ] = ( k + 1 ) / ( k - 1 )
( k - 1 ) sin (x+y) = ( k + 1 ) sin (x-y) ...
hope it help u
Similar questions