Math, asked by santoshbhatnagarh, 8 months ago

If x, y, z are in A.P., a, b, c are in H.P and ax, by, cz are in G.P then​

Answers

Answered by amansharma264
7

EXPLANATION.

=> x, y, z are in Ap.

=> y = x + z / 2 .......(1)

=> a, b, c are in H. P.

=> b = 2ac / a + c .......(2)

=> ax, by, cz are in G. P

=> by = √ax X cz ........(3)

From equation (1) and (2) and (3) we get,

put the value of y and b in equation (3)

  =  >  \:  \:  \bold{\frac{2ac}{a \:  + c}  \times  \frac{x + z}{2}  =  \sqrt{ax \:   \times  cz} }

 =  >  \:  \:   \bold{\frac{(x + z) { {}^{2} } }{(a + c) {}^{2} }  \times (ac) {}^{2}  = ac \:   \times  xz}

   =  >  \:  \: \bold{\frac{(x \:  + z) {}^{2} }{xz}  =  \frac{(a \:  + c) {}^{2} }{ac} }

   =  >  \: \bold{\frac{ {x}^{2} }{xz}  +  \frac{ {z}^{2} }{xz}  +  \frac{2xz}{xz}  =  \frac{ {a}^{2} }{ac}  +  \frac{ {c}^{2} }{ac}  +  \frac{2ac}{ac}}

 =  >  \:  \:  \frac{x}{z}  +  \frac{z}{x} + 2 =  \frac{a}{c}  +  \frac{c}{a} + 2

  =  >  \:  \: \bold{ \frac{x}{z}  +  \frac{z}{x}  =  \frac{a}{c}  +  \frac{c}{a} }

Answered by Anonymous
153

x, y, z are in A.P.

\implies \: \: \bold{y = x +  \frac{z}{2} ............(i) }

a, b, c are in H. P.

\implies \: \: \bold{b =  \frac{2ac}{a + c} ............(ii)}

ax, by, cz are in G.P.

\implies \: \: \bold{by = \sqrt{ax} \times  cz .........(iii)}

From equation (i) and (ii) and (iii),

Put the value of y and b in equation (iii),

\implies{\frac{2ac}{a \: + c} \times \frac{x + z}{2} = \sqrt{ax \: \times cz} }

\implies{\frac{(x + z) { {}^{2} } }{(a + c) {}^{2} } \times (ac) {}^{2} = ac \: \times xz}

\implies{\frac{(x \: + z) {}^{2} }{xz} = \frac{(a \: + c) {}^{2} }{ac} }

\implies \: {\frac{ {x}^{2} }{xz} + \frac{ {z}^{2} }{xz} + \frac{2xz}{xz} = \frac{ {a}^{2} }{ac} + \frac{ {c}^{2} }{ac} + \frac{2ac}{ac}}

\implies\frac{x}{z} + \frac{z}{x} + 2 = \frac{a}{c} + \frac{c}{a} + 2

\implies{ \frac{x}{z} + \frac{z}{x} = \frac{a}{c} + \frac{c}{a} }

Similar questions