If x, y, z are in A.P. and x, y, (z + 1) are in G.P. then
Answers
Answered by
0
Answer:
Correct option is B)
Given,
x,y,z are in G.P.
∴y
2
=xz
Now, x+3,y+3,z+3 are in H.P.
∴y+3=
(x+3)+(z+3)
2(x+3)(z+3)
⇒y+3=
[(x+z)+6]
2[xz+3(x+z)+9]
⇒y+3=
[x+z+6]
2[y
2
+3(x+z)+9
⇒(y+3)(x+z+6)=2y
2
+6(x+z)+18
⇒2y
2
−(x+z+6)y+3(x+z)=0...(i)
Substituting the values of y from given options, we get
y=3 satisfies equation (i).
Similar questions