If X,y,z are in continued proportion
then show that.
X-y upon x-z is equal to y upon y+z
Answers
Ans
\begin{gathered} \sf \frac{x - y}{x - z} = \frac{y}{y + z} \\ \end{gathered}
x−z
x−y
=
y+z
y
Given :-
X, Y, z are in continued proportion , it means that -
\sf \: x \ratio \: y \ratio \ratio \: y \ratio \:zx:y::y:z
SolutioN :-
\begin{gathered} \sf \: x \ratio \: y \ratio\ratio y\ratio \: z \\ \\ \sf \: we \: can \: write \: it \: as \mapsto\\ \\ \sf \implies \: \frac{x}{y} = \frac{y}{z} \\ \\ \sf \implies \: x \: \times \: z = y \times y \\ \\ \sf \implies \: xz = {y}^{2} \\ \\ \sf \implies \: {y}^{2} = xz - - - - (i)\end{gathered}
x:y::y:z
wecanwriteitas↦
⟹
y
x
=
z
y
⟹x×z=y×y
⟹xz=y
2
⟹y
2
=xz−−−−(i)
Now,
\begin{gathered} \sf \frac{x - y}{x - z} = \frac{y}{y + z} \\ \\ \implies \sf (x - y) \times (y + z) = y(x - z) \\ \\ \implies \sf \: xy + xz - {y}^{2} - yz = xy - yz \\ \\ \implies \sf \: \cancel{ xy} - \cancel{xy} + xz - \cancel{ yz }- {y}^{2} + \cancel{ yz} = 0 \\ \\ \implies \sf \: xz - {y}^{2} = 0\\ \\ \implies \sf \: {y}^{2} = xz \\ \\ \sf from \: equation \: (i) \mapsto \\ \\ \implies \sf \: xz = xz \\ \\ \implies \boxed{ \bold{lhs = rhs}}\end{gathered}
x−z
x−y
=
y+z
y
⟹(x−y)×(y+z)=y(x−z)
⟹xy+xz−y
2
−yz=xy−yz
⟹
xy
−
xy
+xz−
yz
−y
2
+
yz
=0
⟹xz−y
2
=0
⟹y
2
=xz
fromequation(i)↦
⟹xz=xz
⟹
lhs=rhs
______________________________
Hope it will help you :)
Answer:
O Bhai teri cutiepie anu to gai