Math, asked by madhav5245, 1 month ago

If x, y, z are in Gp and

  \sf \: {a}^{x}  =  {b}^{y}  =  {c}^{z}  \: prove \: that \:  log_{b}(a)  =  log_{c}(b)

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that, x, y, z are in GP.

So, common ratio between consecutive terms is same.

Thus,

\rm \implies\:\dfrac{y}{x}  = \dfrac{z}{y}  -  -  - (1)

Further given that

\rm :\longmapsto\: {a}^{x}  =  {b}^{y}  =  {c}^{z}

On taking log on both sides, we get

\rm :\longmapsto\: log \: {a}^{x}  =  log \: {b}^{y}  =  log \: {c}^{z}

\rm :\longmapsto\:x \: loga \:  =  \: y \: logb \:  =  \: z \: logc

So, Taking first and second member,

\rm :\longmapsto\:x \: loga \:  =  \: y \: logb \:

\rm :\longmapsto\:\dfrac{y}{x}  = \dfrac{loga}{logb}  -  -  -  - (2)

Taking second and third member, we get

\rm :\longmapsto\: y \: logb \:  =  \: z \: logc

\rm :\longmapsto\:\dfrac{z}{y}  = \dfrac{logb}{logc}  -  -  -  - (3)

So, equating equations (1), (2) and (3), we get

\rm :\longmapsto\:\dfrac{loga}{logb}  = \dfrac{logb}{logc}

\bf\implies \: log_{b}(a)  =  log_{c}(b)

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{ \tt{ \: y \: logx = log {x}^{y}  \: }}

\boxed{ \tt{ \:  \frac{logx}{logy} =  log_{y}(x) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: log1 = 0 \: }}

\boxed{ \tt{ \:  {e}^{logx}  \:  =  \: x \: }}

\boxed{ \tt{ \:  {e}^{y \: logx}  \:  =  \:  {x}^{y}  \: }}

\boxed{ \tt{ \:  {a}^{ log_{a}(x) }  = x \: }}

\boxed{ \tt{ \:  {a}^{y log_{a}(x) }  =  {x}^{y}  \: }}

\boxed{ \tt{ \:  log_{x}(x) = 1 \: }}

Similar questions