If x,y,z are linearly independent vectors, determine whether (x+y),(y+z), and (z+x) are linearly dependent or independent?
Answers
Answer:
they are dependent
hope this answer will help you
Answer :
Linearly independent
Explanation :
Let x , y , z be the vectors of the vector space V(F) .
It is given that x , y , z are linearly independent vectors , then we have
ax + by + cz = 0 → a = b = c = 0 ∀ a , b , c ∈ F
Now ,
To check whether the vectors (x + y) , (y + z) , (z + x) are linearly dependent or independent , let
→ a'(x + y) + b'(y + z) + c'(z + x) = 0
→ a'x + a'y + b'y + b'z + c'z + c'x = 0
→ (c' + a')x + (a' + b')y + (b' + c')z = 0
→ c' + a = 0 , a' + b' = 0 , b' + c' = 0
(°•° x , y , z are linearly independent)
→ a' = b' = c' = 0
→ (x + y) , (y + z) , (z + x) are linearly independent .
Hence ,
(x + y) , (y + z) , (z + x) are linearly independent whenever x , y , z are linearly independent .
Hence proved .
Some important information :
Vector space :
(V , +) be an algebraic structure and (F , + , •) be a field , then V is called a vector space over the field F if the following conditions hold :
- (V , +) is an abelian group .
- ku ∈ V ∀ u ∈ V and k ∈ F
- k(u + v) = ku + kv ∀ u , v ∈ V and k ∈ F .
- (a + b)u = au + bu ∀ u ∈ V and a , b ∈ F .
- (ab)u = a(bu) ∀ u ∈ V and a , b ∈ F .
- 1u = u ∀ u ∈ V where 1 ∈ F is the unity .
♦ Elements of V are called vectors and the lements of F are called scalars .
♦ If V is a vector space over the field F then it is denoted by V(F) .
Linear combination :
A vector v in a vector space V is called a linear combination of the vectors v₁ , v₂ , v₃ , . . . , vₖ if v can be expressed in the form :
v = c₁v₁ + c₂v₂ + c₃v₃ + . . . + cₖvₖ
where c₁ , c₂ , c₃ , . . . , cₖ are scalars and are called weights of linear combination .
Linear dependence :
Let v₁ , v₂ , . . . , vₙ be the n non-zero vectors of a vector space V(F) . If for c₁v₁ + c₂v₂ + . . . + cₙvₙ = 0 (cᵢ ∈ F are scalars) , there exists atleast one cᵢ ≠ 0 , then v₁ , v₂ , . . . , vₙ are called linearly dependent .
♦ If the vectors v₁ , v₂ , . . . , vₙ are linearly dependent , then atleast one of these vectors can be expressed as a linear combination of the remaining vectors .
♦ Examples :
- (1 , 2 , 3) and (2 , 4 , 6) are linearly dependent vectors since (2 , 4 , 6) = 2(1 , 2 , 3)
- (1 , 3 , 4) , (1 , 2 , 3) and (0 , 1 , 1) are linearly dependent vectors since (1 , 3 , 4) = (1 , 2 , 3) + (0 , 1 , 1)
- (3 , 2 , 5) , (2 , 1 , 2) and (-1 , 0 , 1) are linearly dependent vectors since (3 , 2 , 5) = 2(2 , 1 , 2) + (-1 , 0 , 1) .
Linearly independence :
Let v₁ , v₂ , . . . , vₙ be the n non-zero vectors of a vector space V(F) . If for c₁v₁ + c₂v₂ + . . . + cₙvₙ = 0 (cᵢ ∈ F are scalars) , all cᵢ = 0 , then v₁ , v₂ , . . . , vₙ are called linearly independent .
♦ If the vectors v₁ , v₂ , . . . , vₙ are linearly dependent , then none of these vectors can be expressed as a linear combination of the remaining vectors .
♦ Examples :
- (1 , 0) and (0 , 1) are linearly independent vectors .
- (1 , 0 , 0) , (0 , 1 , 0) and (0 , 0 , 1) are linearly independent vectors .
- (1 , 2 , 3) and (0 , 3 , 4) are linearly independent vectors .