Math, asked by madhav5245, 1 month ago

If x, y, z are non negative real numbers such that x+y+z=1, then find the minimum value of
( {x}^{ - 1} + 1)( {y}^{ - 1 }  + 1)( {z}^{ - 1} + 1)
Please don't spam

Quatity answer is needed​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x,y,z > 0

and

\rm :\longmapsto\:x + y + z = 1

Now, we have to find minimum value of

\rm :\longmapsto\:( {x}^{ - 1} + 1)( {y}^{ - 1 } + 1)( {z}^{ - 1} + 1)

can be rewritten as

\rm \:  =  \:\bigg[\dfrac{1}{x} + 1 \bigg]\bigg[\dfrac{1}{y}  + 1\bigg]\bigg[\dfrac{1}{z}  +1 \bigg]

\rm \:  =  \:\bigg(\dfrac{1}{x}  + 1 + \dfrac{1}{xy}  + \dfrac{1}{y} \bigg)\bigg[\dfrac{1}{z}  + 1\bigg]

\rm \:  =  \:\dfrac{1}{x}  + 1 + \dfrac{1}{xy}  + \dfrac{1}{y} + \dfrac{1}{xz}  + \dfrac{1}{z}  + \dfrac{1}{xyz}  + \dfrac{1}{yz}

can be re-arranged as

\rm \:  =  \:1 + \dfrac{1}{xyz} + \bigg(\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} \bigg) + \bigg(\dfrac{1}{xy} + \dfrac{1}{yz}  + \dfrac{1}{zx}  \bigg)

\rm =1 + \dfrac{1}{xyz} + \bigg(\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} \bigg) + \bigg(\dfrac{x + y + z}{xyz} \bigg)

\rm =1 + \dfrac{1}{xyz} + \bigg(\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} \bigg) + \bigg(\dfrac{1}{xyz} \bigg)

 \red{\bf =1 + \dfrac{2}{xyz} + \bigg(\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} \bigg) -  -  -  - (1)}

Now, Consider,

\rm :\longmapsto\:x + y + z = 1

We know,

\boxed{ \rm \:AM \geqslant GM}

So, for the non zero real numbers, x, y, z, we have

\rm :\longmapsto\:\dfrac{x + y + z}{3} \geqslant  \sqrt[3]{xyz}

\rm :\longmapsto\:\dfrac{1}{3} \geqslant  \sqrt[3]{xyz}

On Cubing both sides,

\rm :\longmapsto\:\dfrac{1}{27}  \geqslant xyz

\bf\implies \:\dfrac{1}{xyz} \geqslant 27

Now,

Also we know, that,

\boxed{ \rm \:AM \geqslant HM}

So, for the non zero real numbers,

\rm :\longmapsto\:\dfrac{1}{x}, \dfrac{1}{y} ,\dfrac{1}{z} \: we \: have

\rm :\longmapsto\:\dfrac{\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} }{3} \geqslant  \dfrac{3}{\dfrac{1}{\dfrac{1}{x} }  + \dfrac{1}{\dfrac{1}{y} } + \dfrac{1}{\dfrac{1}{z} }  }

\rm :\longmapsto\:\dfrac{\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} }{3}  \geqslant  \dfrac{3}{x + y + z}

\rm :\longmapsto\:\dfrac{\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} }{3}  \geqslant 3

\bf\implies \:\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z}  \geqslant 9

So, substituting these values evaluated above in equation (1), we get

 \red{\bf =1 + \dfrac{2}{xyz} + \bigg(\dfrac{1}{x}  + \dfrac{1}{y}  + \dfrac{1}{z} \bigg) -  -  -  - (1)}

\rm \: \geqslant \:1 + 2(27) + 9

\rm \: \geqslant \:1 + 54 + 9

\rm \: \geqslant \:64

So,

\rm :\longmapsto\:( {x}^{ - 1} + 1)( {y}^{ - 1 } + 1)( {z}^{ - 1} + 1) \geqslant 64

Hence,

\boxed{ \rm \:\:Minimum \: value \: of \: ( {x}^{ - 1} + 1)( {y}^{ - 1 } + 1)( {z}^{ - 1} + 1) \: is \: 64}

Similar questions