Math, asked by 12ahujagitansh, 7 hours ago

If x, y, z are real and distinct and positive, show that

 {x}^{2}  +  {y}^{2}  +  {z}^{2}  > xy + yz + zx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x \:  \ne \: y \:  \ne \: z \:  >  \: 0

We know,

Arithmetic mean between two distinct positive numbers is greater than Geometric mean.

Arithmetic mean between two positive numbers a and b is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ Arithmetic \: mean =  \frac{a + b}{2} \: }}} \\

Geometric mean between two positive numbers a and b is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ Geometric \: mean \:  =  \:  \sqrt{ab} \: }}} \\

So,

\rm :\longmapsto\:Let \: consider \: two \: numbers \:  {x}^{2}  \: and \:  {y}^{2}

\rm :\longmapsto\:\dfrac{ {x}^{2}  +  {y}^{2} }{2} >  \sqrt{ {x}^{2}  {y}^{2} }

\bf\implies \: {x}^{2} +  {y}^{2} > 2xy -  -  - (1)

Now,

\rm :\longmapsto\:Let \: consider \: two \: numbers \:  {y}^{2}  \: and \:  {z}^{2}

\rm :\longmapsto\:\dfrac{ {y}^{2}  +  {z}^{2} }{2} >  \sqrt{ {y}^{2}  {z}^{2} }

\bf\implies \: {y}^{2} +  {z}^{2} > 2yz -  -  -  - (2)

Now,

\rm :\longmapsto\:Let \: consider \: two \: numbers \:  {x}^{2}  \: and \:  {z}^{2}

\rm :\longmapsto\:\dfrac{ {x}^{2}  +  {z}^{2} }{2} >  \sqrt{ {x}^{2}  {z}^{2} }

\bf\implies \: {x}^{2} +  {z}^{2} > 2xz -  -  -  - (3)

On adding equation (1), (2) and (3), we get

\rm :\longmapsto\:2( {x}^{2} +  {y}^{2} +  {z}^{2}) > 2(xy + yz + zx)

\bf\implies \: {x}^{2} +  {y}^{2} +  {z}^{2} > xy + yz + zx

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\rm :\longmapsto\:Arithmetic \: mean \geqslant Geometric \: mean \geqslant Harmonic \: mean

\rm :\longmapsto\: {(Geometric \:  mean)}^{2} = Arithmetic \: mean \times Harmonic \: mean

Similar questions