If x, y, z are real number, then show that √x-1y,√y-1z,√z-1x=1
Answers
Answered by
8
Given: x, y, z are real number.
To find: Show that √(x^-1)y . √(y^-1)z . √(z^-1)x = 1
Solution:
- Now we have given the expression √(x^-1)y . √(y^-1)z . √(z^-1)x = 1.
- Lets consider LHS first, we have:
√(x^-1)y . √(y^-1)z . √(z^-1)x
- It can be rewritten as :
√y/x . √z/y . √x/z
- Now multiplying all three, we get:
√ y/x . z/y . x/z
√xyz / xyz
√1 = 1 ....................RHS.
- Hence LHS = RHS.
Answer:
So from above solution we proved that √(x^-1)y . √(y^-1)z . √(z^-1)x = 1
Similar questions