Math, asked by stiger659, 10 months ago

if x,y,z are real numbers show that ✔x ^-1 z multiply ✔y ^-1 z multiply ✔z ^-1 x = 1
✔ is underroot
I can't understand help​

Answers

Answered by XEVILX
5

Hey Pretty Stranger!

 \bf \: Correct  \: Question :

If x,y,z are real numbers show that :

 \sf \:  \sqrt{ {x}^{ - 1}y }  \times  \sqrt{ {y}^{ - 1} z}  \times  \sqrt{ {z}^{ - 1} x}  = 1

 \bf \: Solution :

We've :

 \rightarrow \sf \:  \sqrt{ {x}^{ - 1}y }  \times  \sqrt{ {y}^{ - 1} z}  \times  \sqrt{ {z}^{ - 1} x}

 \rightarrow \sf \:   \sqrt{ \dfrac{y}{x} }  \times  \sqrt{ \dfrac{z}{y} }  \times  \sqrt{ \dfrac{x}{z} }

 \rightarrow \sf \:      ({ \dfrac{y}{x} })^{ \frac{1}{2} }  \:  \: ( { \dfrac{z}{y} })^{ \frac{1}{2} }  \:  \: ( { \dfrac{x}{z} })^{ \frac{1}{2} }

 \rightarrow \sf \:     \dfrac{ {y}^{ \frac{1}{2} } }{ {x}^{ \frac{1}{2} } }   \times    \dfrac{ {z}^{ \frac{1}{2} } }{ {y}^{ \frac{1}{2} } }   \times    \dfrac{ {x}^{ \frac{1}{2} } }{ {z}^{ \frac{1}{2} } }

 \rightarrow \sf \:  1

Hence, Proved!

Similar questions