Math, asked by guptaananya2005, 12 days ago

If x, y, z are real positive numbers then minimum value of the expression

 \frac{x + y}{z}  +  \frac{y + z}{x}  +  \frac{z + x}{y}  \: is \:  -  -  -  -  -
EVALUATE

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ... all who knows it.

Answers

Answered by bhumi242rawal242
0

Answer:

x + y/z + y + z/x + z + x/y

Multiply throughout by xyz

xyz × x + y/z + xyz × y + z/x + xyz × z + x/y

xy(x + y) + yz(y + z) + xz (z + x)

x²y + y²x + y²z + z²y + xz² + x²z

xyz(x + y + y + z + z + x)

xyz(2x + 2y + 2z)

2xyz(x + y + z)

Hope this will help!

MARK ME AS BRAINLIEST!!

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\:x, \: y, \: z \:   >   \: 0}

and

\rm :\longmapsto\:\dfrac{x + y}{z}  + \dfrac{y + z}{x}  + \dfrac{z + x}{y}

\rm \:  =  \: \dfrac{x}{z}  + \dfrac{y}{z} +  \dfrac{y}{x}  + \dfrac{z}{x}  + \dfrac{z}{y}  + \dfrac{x}{y}

can be re-arranged as

\rm \:  =  \: \bigg[\dfrac{x}{y}  + \dfrac{y}{x} \bigg] + \bigg[\dfrac{y}{z} + \dfrac{z}{y}  \bigg] + \bigg[\dfrac{z}{x} + \dfrac{x}{z}  \bigg]

We know,

If a and b are two real positive numbers, then Arithmetic Mean and Geometric Mean between a and b are related as

\boxed{ \tt{ \: AM \geqslant GM\rm \implies\:a + b \geqslant 2 \sqrt{ab} \: }}

So, using this, in above expression, we get

\rm \: \geqslant   \: 2 \sqrt{\dfrac{x}{y}  \times \dfrac{y}{x} } + 2 \sqrt{\dfrac{y}{z}  \times \dfrac{z}{y} } + 2 \sqrt{\dfrac{z}{x}  \times \dfrac{x}{z} }

\rm \:  \geqslant   \: 2 \sqrt{1}  +  2 \sqrt{1} +  2 \sqrt{1}

\rm \:  \geqslant   \: 2  +  2   +  2

\rm \:  \geqslant   \: 6

Hence,

\rm :\longmapsto\:\dfrac{x + y}{z}  + \dfrac{y + z}{x}  + \dfrac{z + x}{y}  \geqslant 6

So, Minimum value

\rm :\longmapsto\:\dfrac{x + y}{z}  + \dfrac{y + z}{x}  + \dfrac{z + x}{y}   =  6

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

1. Arithmetic mean between two positive numbers x and y is given by

\red{\rm :\longmapsto\:\boxed{ \tt{ \: AM =  \frac{x + y}{2} \: }}}

2. Geometric mean between two positive real numbers x and y is given by

\red{\rm :\longmapsto\:\boxed{ \tt{ \: GM =  \sqrt{xy} \: }}}

3. Harmonic mean between two positive real numbers x and y is given by

\red{\rm :\longmapsto\:\boxed{ \tt{ \: HM =  \frac{2xy}{x + y} \: }}}

4. Relationship between Arithmetic mean, Geometric mean and Harmonic mean

\red{\rm :\longmapsto\:\boxed{ \tt{ \: AM \geqslant GM \geqslant HM \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {GM}^{2}  \: =  \: AM \:  \times  \: HM \: }}}

Similar questions