Math, asked by handlaloraon, 1 year ago

if X + Y + Z equal to 12 and X square + Y square + Z square equal to 64 then find X Y + Y Z plus ZX

Answers

Answered by bhairabchowdang
25
x+y+z= 12
 {x}^{2}  +  {y}^{2}  +  {z}^{2}  = 64
 {(x + y + z)}^{2}  =   {x}^{2}  +  {y}^{2}  +  {z}^{2}  +  \:  \:  \:  \:  \:   \\  2(xy + yz + zx)
therefore
xy + yz + zx
=
 \frac{1}{2}  (  {(x + y + z)}^{2}  - ( {x}^{2}  +  {y}^{2}  +  {z}^{2} ))
 =  \frac{1}{2}   \times (12^{2}  - 64)
  =  \frac{1}{2}  \times  \: (144 - 64)
 =  \frac{1}{2}  \times 80
=40
Answered by lodhiyal16
15

Answer: Solution is 40


Step-by-step explanation:

Given  X + Y + Z = 12

X² + Y²+ Z² = 64

Squaring the both sides

(X + Y + Z )² = 12²

X² + Y² + Z² + 2XY + 2YZ + 2ZX = 144

Regroup the term

( X² + Y²+ Z² ) + 2 ( XY +YZ + ZX ) = 144

Putting the value of X² + Y²+ Z² = 64

64 + 2 (XY + YZ + ZX ) = 144

2 ( XY + YZ + ZX ) = 144 - 64

2 ( XY + YZ + ZX ) = 80

XY + YZ + ZX = 80 /2

XY + YZ + ZX = 40

So the answer is 40



Similar questions