if x y z equals to 1 then show that 1 + X + y whole to the power minus 1 + 1 + Y + Z whole square minus 1 + 1 + 1 + x to the power minus 1 whole to the power minus 1 equals to 1
Answers
Answered by
8
Answer:
proved
Step-by-step explanation:
Given If x y z equals to 1 then show that 1 + X + y whole to the power minus 1 + 1 + Y + Z whole square minus 1 + 1 + 1 + x to the power minus 1 whole to the power minus 1 equal to
1
So if xyz = 1
(1 + x + y – 1)^-1 + (1 + y + z – 1)^-1 + (1 + z + x – 1)^-1 = 1
1 / 1 + x + y^-1 + 1/1 + y + z^-1 + 1/1 + z + x^-1
1/1 + x + 1/y + 1 / 1 + y + 1/z + 1 / 1 + z + 1/x
y / y + xy + 1 + 1 / 1 + y + xy + 1 / 1 + 1/x + 1/xy ( if xyz = 1 , z = 1/xy)
y / 1 + y + xy + 1 / 1 + y + xy + xy / 1 + y + xy
y + 1 + xy / 1 + y + xy
= 1
Similar questions