if x y z is equal to 9 and xy + Y Z plus ZX is equals to 23 then the value of x cube + y cube + Z cube minus 3 x y z is equal to
Answers
Step-by-step explanation:
Correct Question :-
If x + y + z = 9 and xy + yz + zx = 23 Then, find the value of x³ + y³ + z³ - 3xyz
Solution :-
Given -
- x + y + z = 9
- xy + yz + zx = 23
→ -1(-xy - yz - zx) = 23
→ -xy - yz - zx = -23
To Find -
- Value of x³ + y³ + z³ - 3xyz
As we know that :-
(x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
→ (9)² = x² + y² + z² + 2(xy + yz + zx)
→ 81 = x² + y² + z² + 2(23)
→ x² + y² + z² = 81 - 46
→ x² + y² + z² = 35
Now,
As we know that :-
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
→ (9)(35 - 23)
→ 9 × 12
→ 108
Hence,
The value of x³ + y³ + z³ - 3xyz is 108
Step-by-step explanation:
> (x3 + y3 + z3 - 3xyz)
= (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
= (x + y + z) [(x + y + z)2 - 3(xy + yz + zx)]
= 9 x (81 - 3 x 23)
= (9 x 12)
= 108