if X + Y + Z is equals to zero show that x cube + y cube + Z cube is equals to 3 x y z
Answers
Answered by
17
GIVEN:- x=y=z=0
Then,
x^3 + y^3 +z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
so, x+y+z=0
x^3+y^3+z^3-3xyz=0
x^3+y^3+z^3=3xyz
Then,
x^3 + y^3 +z^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
so, x+y+z=0
x^3+y^3+z^3-3xyz=0
x^3+y^3+z^3=3xyz
ruhig:
welcome
Answered by
9
x+y+z=0
x+y=-z
cubing both the sides.
(x+y)^3=(-z)^3
x^3+y^3 +3xy(x+y)= -z^3
x^3+y^3 +3xy(-z)=-z^3 (x-y= -z)
x^3+y^3 -3xyz=-z^3
x^3+y^3+z^3=3xyz
mark me as brainlist
x+y=-z
cubing both the sides.
(x+y)^3=(-z)^3
x^3+y^3 +3xy(x+y)= -z^3
x^3+y^3 +3xy(-z)=-z^3 (x-y= -z)
x^3+y^3 -3xyz=-z^3
x^3+y^3+z^3=3xyz
mark me as brainlist
Similar questions
Social Sciences,
8 months ago
Math,
8 months ago
History,
8 months ago
Math,
1 year ago
Math,
1 year ago
Biology,
1 year ago
Science,
1 year ago
Accountancy,
1 year ago