if x+y+z =positive real number, x^3+ y^3+ z^3=3xyz then solve x^3+ y^3/z^3
Answers
Answered by
0
it is not clear what is to be solved...
x³ + y³ + z³ - 3 x y z = (x + y + z) (x² + y² + z² - xy - y z - zx ) --- (1)
we are given x³ + y³ + z³ = 3 xy z ---(2)
x³+y³ = 3 x y z - z³ = z (3xy - z²)
As LHS = 0, and x+y+z ≠ 0 in (1),
x² + y² + z² = x y + y z + z x --- (3)
(x³ + y³) / z³ = (3 x y z - z³) / z³ = 3 x y /z² - 1 -- (4)
we know that, (x³ + y³) = (x+y) (x² + y² - xy)
So if it is given that (x³ + y³) > z³
=> z ( 3 x y - z²) > z³
=> if z > 0, then 3 x y > 2 z²
if z < 0, then 3 x y < 2 z²
x³ + y³ + z³ - 3 x y z = (x + y + z) (x² + y² + z² - xy - y z - zx ) --- (1)
we are given x³ + y³ + z³ = 3 xy z ---(2)
x³+y³ = 3 x y z - z³ = z (3xy - z²)
As LHS = 0, and x+y+z ≠ 0 in (1),
x² + y² + z² = x y + y z + z x --- (3)
(x³ + y³) / z³ = (3 x y z - z³) / z³ = 3 x y /z² - 1 -- (4)
we know that, (x³ + y³) = (x+y) (x² + y² - xy)
So if it is given that (x³ + y³) > z³
=> z ( 3 x y - z²) > z³
=> if z > 0, then 3 x y > 2 z²
if z < 0, then 3 x y < 2 z²
Answered by
0
Given that x^3+y^3+z^3=3xyz
x^3+y^3+z^3-3xyz=o
(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0
as x+y+z=+ve real number , x^2+y^2+z^2-xy-yz-zx=0
1/2{(x-y)^2+(y-z)^2+(z-x)^2}=0
as (x-y)^2,(y-z)^2&(z-x)^2 are real and positive number the above equation can
only be possibble when x=y=z
then (x^3+y^3)/z3=2
Hence 2 is the answer
x^3+y^3+z^3-3xyz=o
(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0
as x+y+z=+ve real number , x^2+y^2+z^2-xy-yz-zx=0
1/2{(x-y)^2+(y-z)^2+(z-x)^2}=0
as (x-y)^2,(y-z)^2&(z-x)^2 are real and positive number the above equation can
only be possibble when x=y=z
then (x^3+y^3)/z3=2
Hence 2 is the answer
Similar questions