if x=y-z show that x³-y³+z³+3xyz
Answers
Answered by
0
Answer:
Step-by-step explanation:
In order to prove this ,
Let us use the formula :
x3 + y3 + z3 - 3xyz = ( x + y + z) (x2 + y2 + z2 - xy - yz - xz)
Now let us keep x + y + z = 0
So,
x3 + y3 + z3 - 3xyz = 0
x3 + y3 + z3 = 3xyz
H€nc€ Prov€d...
or
We know that
x^3+y^3+z^3-3xyz=(x+y+z) (x^2+y^2+z^2-xy-yz-zx)
putting x+y+z=0
x^3+y^3+z^3-3xyz=(0) ( x^2+y^2+z^2-xy-yz-zx)
x^3+y^3+z^3=0
x^3+y^3+z^3=3xyz
Hence proved
Similar questions