If (x/y) = (z/w), then what is (xy + zw)^2 equal to ?
Answers
(x/y) = (z/w)
xw = yz
xw - yz = 0
(xw - yz)² = 0
(xw)² + (yz)² = 2xwyz .......................................................(1)
Now, (xy + zw)^2 = (xy)² + (wz)² + 2xwyz
(xy + zw)^2 = (xy)² + (wz)² + (xw)² + (yz)² .......................................................(from 1)
= (y² + w²) (x² + z²)
Please verify the answer and tell me.
Given:
(x/y) = (z/w)
To Find:
(xy + zw)² equal to
Solution:
We will solve
(x/y) = (z/w)
By cross multiplication
xw = yz
xw-yz = 0
Squarring both sides
(xw-yz)² = 0
(xw)² + (yz)² - 2xwyz = 0 [using identity(a-b)² = a² +b² - 2ab ]
(xw)² + (yz)² = 2xwyz ................................(i)
Now,
According to the question:
(xy + zw)² = (xy)² + (zw)² +2xyzw [Using (a+b) = a² +b² +2ab]
= (xy)² + (zw)² +2xwyz ...........(ii)
Putting the value of 2xwyz in (ii)
(xy + zw)² = (xy)² + (zw)²+ (xw)² + (yz)²
= x²(y² + w²) + z²(w²+ y²) [Taking x² and z² as common]
= (x²+z²)(y² +w²)
Hence, the value of (xy + zw)² is (x²+z²)(y² +w²).