If x1 x2 x3 are in ap with common difference d1 and y1 y2 y3 are in ap with common difference d2 then area of triangle formed by
Answers
Answered by
5
Given:
———-
x2 - x1 = x3 - x2 = d1
x1 - x2 = x2 - x3 = -d1 —-> 1
y2 - y1 = y3 - y2 = d2
y1 - y2 = y2 - y3 = -d2 —-> 2
Area of the triangle = (1/2)*|(x1)*(y2 - y3) + (x2)*(y3 - y1) + (x3)*(y1 - y2)|
= (1/2)*|(x1)*(-d2) + (x2)*(y3 - y1) + (x3)*(-d2)|
= (1/2)*|(x1)*(-d2) + (x3)*(-d2) + (x2)*(y3 - y1) |
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(y3 - y1)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(d2 + y2 - y1)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(d2 + d2)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(2d2)|
= (1/2)*(d2)*|2x2 - x1 - x3|
= (1/2)*(d2)*|x2 + x2 - x1 - x3|
= (1/2)*(d2)*|(x2 - x1) + (x2 - x3)|
= (1/2)*(d2)*|d1 - d1|
= 1/2)*(d2)*0
= 0 ——> Answer
———-
x2 - x1 = x3 - x2 = d1
x1 - x2 = x2 - x3 = -d1 —-> 1
y2 - y1 = y3 - y2 = d2
y1 - y2 = y2 - y3 = -d2 —-> 2
Area of the triangle = (1/2)*|(x1)*(y2 - y3) + (x2)*(y3 - y1) + (x3)*(y1 - y2)|
= (1/2)*|(x1)*(-d2) + (x2)*(y3 - y1) + (x3)*(-d2)|
= (1/2)*|(x1)*(-d2) + (x3)*(-d2) + (x2)*(y3 - y1) |
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(y3 - y1)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(d2 + y2 - y1)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(d2 + d2)|
= (1/2)*|(-d2)*(x1 + x3) + (x2)*(2d2)|
= (1/2)*(d2)*|2x2 - x1 - x3|
= (1/2)*(d2)*|x2 + x2 - x1 - x3|
= (1/2)*(d2)*|(x2 - x1) + (x2 - x3)|
= (1/2)*(d2)*|d1 - d1|
= 1/2)*(d2)*0
= 0 ——> Answer
Similar questions