if x1,x2,...,xn are the values of n in the variable x such that summation(xi-2)=110 and summation(xi-5)=20 then find the value of n and it's mean
Answers
Answered by
23
Answer : n = 30 and Mean = 17/3
Step-by-step explanation :
Since we know that,
∑ = ( x1 + x2 +.......+ xn )
So, ∑( xi - 2 ) = ( x1 - 2 ) + ( x2 - 2 ) +......+ ( xn - 2 )
Also, ∑( xi - 2 ) = 110
( x1 - 2 ) + ( x2 - 2 ) +......+ ( xn - 2 ) = 110
( x1 + x2 +.....+ xn ) - 2n = 110
∑ - 2n = 110 _(i)
Similarly,
∑( xi - 5 ) = ( x1 - 5 ) + ( x2 - 5 ) +.....+ ( xn - 5 )
Also, ∑( xi - 5 ) = 20
( x1 - 5 ) + ( x2 - 5 ) +.....+ ( xn - 5 ) = 20
( x1 + x2 +..... + xn ) - 5n = 20
∑ - 5n = 20 _(ii)
Subtracting (i) from (ii) we get,
∑ - 5n - ( ∑ - 2n ) = 20 - 110
- 3n = - 90
n = 30
Substituting value of n kn eq(ii)
∑ - 5(30) = 20
∑ = 20 + 150 = 170
So, Mean = 170/30 or 17/3
Step-by-step explanation :
Since we know that,
∑ = ( x1 + x2 +.......+ xn )
So, ∑( xi - 2 ) = ( x1 - 2 ) + ( x2 - 2 ) +......+ ( xn - 2 )
Also, ∑( xi - 2 ) = 110
( x1 - 2 ) + ( x2 - 2 ) +......+ ( xn - 2 ) = 110
( x1 + x2 +.....+ xn ) - 2n = 110
∑ - 2n = 110 _(i)
Similarly,
∑( xi - 5 ) = ( x1 - 5 ) + ( x2 - 5 ) +.....+ ( xn - 5 )
Also, ∑( xi - 5 ) = 20
( x1 - 5 ) + ( x2 - 5 ) +.....+ ( xn - 5 ) = 20
( x1 + x2 +..... + xn ) - 5n = 20
∑ - 5n = 20 _(ii)
Subtracting (i) from (ii) we get,
∑ - 5n - ( ∑ - 2n ) = 20 - 110
- 3n = - 90
n = 30
Substituting value of n kn eq(ii)
∑ - 5(30) = 20
∑ = 20 + 150 = 170
So, Mean = 170/30 or 17/3
Answered by
0
Please find the value of x also.....
Similar questions