Math, asked by khusnuda9942, 6 months ago


If (x1, y1) = (2, 3); x2= 3 and y3 = -2 and G is (0,0), Find y2 and x3.​

Answers

Answered by abhi569
10

Answer:

x3 = -5 ; y2 = - 1

Step-by-step explanation:

We know,

G(x, y) = ( (x1+x2+x3)/3, (y1+y2+y3)/3 )

Substituting the values,

=> (0,0) = ( (2+3+x3)/3 , (3+y2-2)/3 )

=> (0,0) = ( (5+x3)/3, (1+y2)/3 )

=> 0 = (5+x3)/3 & 0 = (1+y2)/3

=> 0 = 5+x3 & 0 = 1 + y2

=> - 5 = x3 & - 1 = y2

Answered by Mysterioushine
74

Question :

The coordinates of a triangle are (x₁ , y₁) = (2 , 3) ; x₂ = 3 and y₃ = -2. The coordinates of the centroid are (0 , 0) Then Find y₂ and x₃.

Given :

  • (x₁ , y₁) = (2 , 3) ; (x₂ , y₂) = (3 , y₂)

  • (x₃ , y₃) = (x₃ , -2)

  • G = (0,0)

To Find :

  • y₂ and x₃

Knowledge required :

If the three vertices of a triangle are (x₁ , y₁) , (x₂ , y₂) and (x₃ , y₃) then the coordinates of centroid are given by ,

 \large{ \boxed{ \rm{G = \bigg(\dfrac{x_1+x_2+x_3}{3} , \dfrac{y_1 + y_2 + y_3}{3}\bigg)}}}

Solution :

We have ,

  • x₁ = 2 , x₂ = 3 , x₃ = x₃
  • y₁ = 3 , y₂ = y₂ , y₃ = -2

By susbstituting the values in the formula we get ;

  \\  \implies \rm \: (0,0)= \bigg(\dfrac{2+3+x_3}{3} , \dfrac{ 3+ y_2 +  - 2}{3}\bigg)

• Equating x-coordinates we get ;

 \\  \implies \rm \: 0 =   \dfrac{2+3+x_3}{3}   \\  \\  \\  \implies \rm \: 0  \times 3= 2 + 3 + x_3 \\  \\  \\  \implies \rm \: 0 = 5 + x_3 \\  \\  \\  \implies \underline {\boxed {\bf{ \pink{x_3 =  - 5}}}}

• Now by equating y-coordinates we get ;

 \\  \implies \rm \: 0=  \dfrac{3 + y_2 +  - 2}{3} \\  \\   \\  \implies \rm \: 0  \times 3= 3 + ( - 2) + y_2 \\  \\  \\  \implies \rm \: 0 = 3 - 2 + y_2 \\  \\  \\  \implies \rm \: 0 = 1 + y_2 \\  \\  \\  \implies \underline  {\boxed{ \bf {\pink{y_2 =  - 1}}}}

Hence ,

  • x₃ = -5
  • y₂ = -1

Similar questions