Math, asked by cool1212, 6 months ago

if (x1,y1),(X2,y2),(X3,y3)&(x4,y4) points are joined in order to form a parallelogram, then prove that x1+X3=X2+x4 and y1+ y3=y2+y4.​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{The points}\;\mathsf{(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4)}

\textsf{form a parallelogram}

\textbf{To prove:}

\mathsf{x_1+x_3=x_2+x_4}

\mathsf{y_1+y_3=y_2+y_4}

\textbf{Solution:}

\textsf{Let the given points be}\;\mathsf{A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),D(x_4,y_4)}

\textsf{We know that,}

\boxed{\textsf{Diagonals of parallelogram bisect each other}}

\implies\textsf{Midpoint of diagonal AC=Midpoint of diagonal BD}

\implies\mathsf{\left(\dfrac{x_1+x_3}{2},\dfrac{y_1+y_3}{2}\right)=\left(\dfrac{x_2+x_4}{2},\dfrac{y_2+y_4}{2}\right)}

\textsf{Equating corresponding co-ordinates, we get}

\mathsf{\dfrac{x_1+x_3}{2}=\dfrac{x_2+x_4}{2}}

\implies\boxed{\mathsf{x_1+x_3=x_2+x_4}}

\mathsf{and}

\mathsf{\dfrac{y_1+y_3}{2}=\dfrac{y_2+y_4}{2}}

\implies\boxed{\mathsf{y_1+y_3=y_2+y_4}}

\textbf{Find more:}

Show that thepoints A (0, 0), B(3, 0),C(4, 1) and D(1, 1) form a parallelogram​

https://brainly.in/question/22269492

Similar questions