Math, asked by ruchirawat2602, 9 months ago

if x1009 y1011=(x=y)2020,then dy/dx=

Answers

Answered by Swarup1998
8

(1) Direct derivative:

Solution: \mathrm{x^{1009}.y^{1011}=(x+y)^{2020}} ... ...(1)

Differentiating both sides with respect to \mathrm{x}, we get

\quad \mathrm{\dfrac{d}{dx}(x^{1009}.y^{1011})=\dfrac{d}{dx}[(x+y)^{2020}]}

\mathrm{\Rightarrow 1011.x^{1009}.y^{1010}.\dfrac{dy}{dx}+1009.x^{1008}.y^{1011}=2020.(x+y)^{2019}.(1+\dfrac{dy}{dx})}

\mathrm{\Rightarrow\dfrac{1011.x^{1009}.y^{1011}}{y}.\dfrac{dy}{dx}+\dfrac{1009.x^{1009}.y^{1011}}{x}=2020.(x+y)^{2019}.(1+\dfrac{dy}{dx})}

\mathrm{\Rightarrow\dfrac{1011}{y}.(x+y)^{2020}.\dfrac{dy}{dx}+\dfrac{1009}{x}.(x+y)^{2020}=2020.(x+y)^{2019}.(1+\dfrac{dy}{dx})\:[by\:(1)]}

\mathrm{\Rightarrow\dfrac{1011}{y}.(x+y).\dfrac{dy}{dx}+\dfrac{1009}{x}.(x+y)=2020.(1+\dfrac{dy}{dx})}

\mathrm{\Rightarrow[\dfrac{1011}{y}.(x+y)-2020].\dfrac{dy}{dx}=2020-\dfrac{1009}{x}.(x+y)}

\mathrm{\Rightarrow\dfrac{1011x+1011y-2020y}{y}.\dfrac{dy}{dx}=\dfrac{2020x-1009x-1009y}{x}}

\mathrm{\Rightarrow\dfrac{1011x-1009y}{y}.\dfrac{dy}{dx}=\dfrac{2020x-1009y}{x}}

\mathrm{\Rightarrow\dfrac{dy}{dx}=\dfrac{y}{x}}

This is the required derivative.

(2) Logarithmic derivative:

Solution: \mathrm{x^{1009}.y^{1011}=(x+y)^{2020}}

Taking \mathrm{log} to both sides, we get

\quad \mathrm{log(x^{1009}.y^{1011})=log[(x+y)^{2020}]}

\mathrm{\Rightarrow log(x^{1009})+log(y^{1011})=log[(x+y)^{2020}]}

\mathrm{\Rightarrow 1009.logx+1011.logy=2020.log(x+y)}

Differentiating both sides with respect to \mathrm{x}, we get

\quad \mathrm{\dfrac{d}{dx}(1009.logx+1011.logy)=\dfrac{d}{dx}[2020.log(x+y)]}

\mathrm{\Rightarrow 1009.\dfrac{d}{dx}(logx)+1011.\dfrac{d}{dx}(logy)=2020.\dfrac{d}{dx}[log(x+y)]}

\mathrm{\Rightarrow\dfrac{1009}{x}+\dfrac{1011}{y}.\dfrac{dy}{dx}=\dfrac{2020}{x+y}.(1+\dfrac{dy}{dx})}

\mathrm{\Rightarrow\dfrac{1011}{y}.\dfrac{dy}{dx}-\dfrac{2020}{x+y}.\dfrac{dy}{dx}=\dfrac{2020}{x+y}-\dfrac{1009}{x}}

\mathrm{\Rightarrow(\dfrac{1011}{y}-\dfrac{2020}{x+y}).\dfrac{dy}{dx}=\dfrac{2020}{x+y}-\dfrac{1009}{x}}

\mathrm{\Rightarrow\dfrac{1011x+1011y-2020y}{y(x+y)}.\dfrac{dy}{dx}=\dfrac{2020x-1009x-1009y}{x(x+y)}}

\mathrm{\Rightarrow\dfrac{1011x-1009y}{y(x+y)}.\dfrac{dy}{dx}=\dfrac{1011x-1009y}{x(x+y)}}

\mathrm{\Rightarrow\dfrac{dy}{dx}=\dfrac{y}{x}}

This is the required derivative.

Answered by nirman95
3

To find:

Derivative of

 {x}^{1009}  {y}^{1011}  = {(x - y)}^{2020}

Calculation:

The basic trick to solve this type of question is to apply logarithm on both sides;

 =  >  \log \bigg \{ {x}^{1009}  {y}^{1011}  \bigg \} =  \log \bigg \{{(x - y)}^{2020}  \bigg \}

 =  >  \log \bigg \{ {x}^{1009}  \bigg \} +   \log \bigg \{ {y}^{1011}  \bigg \} =  \log \bigg \{{(x - y)}^{2020}  \bigg \}

 =  >  1009\log \bigg \{ x \bigg \} + 1011  \log \bigg \{ y  \bigg \} =  2020\log \bigg \{(x - y)\bigg \}

Now , differentiation w.r.t x ;

 =  >  1009 \dfrac{d\log \bigg \{ x \bigg \}}{dx}+ 1011 \dfrac{ d \log \bigg \{ y  \bigg \}}{dx} =  2020 \dfrac{d\log \bigg \{(x - y)\bigg \}}{dx}

 =  >  \dfrac{ 1009}{x}+  \dfrac{1011}{y}(  \dfrac{dy}{dx})  =   \dfrac{2020 }{x - y}(1 -  \dfrac{dy}{dx} )

 =  >  \dfrac{ 1009}{x}+  \dfrac{1011}{y}(  \dfrac{dy}{dx})  =   \dfrac{2020 }{x - y} -  \dfrac{2020}{(x - y)} (  \dfrac{dy}{dx} )

 =  >    \bigg \{\dfrac{1011}{y}   +   \dfrac{2020}{(x - y)} \bigg \}( \dfrac{dy}{dx} )  =   \dfrac{2020 }{x - y} -  \dfrac{1009}{x}

 =  >  \bigg \{ \dfrac{1011x + 1009y}{y(x - y)}  \bigg \}( \dfrac{dy}{dx} ) =  \dfrac{1011x + 1009y}{x(x - y)}

 =  >  \dfrac{dy}{dx}  = \dfrac{y}{x}

So, final answer is:

 \boxed{  \sf{\dfrac{dy}{dx}  = \dfrac{y}{x}}}

Similar questions