Math, asked by KopChi, 1 month ago

if x2+1/25x2=43/8. Find x3+1/125x3​

Answers

Answered by ZaraAntisera
0

Answer:

x^2+\frac{1}{25}x^2=\frac{43}{8},\:x^3+\frac{1}{125}x^3\quad :\quad x=\frac{5\sqrt{559}}{52},\:x=-\frac{5\sqrt{559}}{52}

\left(\mathrm{Decimal}:\quad x=2.27338\dots ,\:x=-2.27338\dots \right)

Step-by-step explanation:

x^2+\frac{1}{25}x^2=\frac{43}{8},\:x^3+\frac{1}{125}x^3

\mathrm{Multiply\:both\:sides\:by\:}25

x^2\cdot \:25+\frac{1}{25}x^2\cdot \:25=\frac{43}{8}\cdot \:25

25x^2+x^2=\frac{1075}{8}

26x^2=\frac{1075}{8}

\mathrm{Divide\:both\:sides\:by\:}26

\frac{26x^2}{26}=\frac{\frac{1075}{8}}{26}

x^2=\frac{1075}{208}

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{\frac{1075}{208}},\:x=-\sqrt{\frac{1075}{208}}

=\frac{\sqrt{1075}}{\sqrt{208}}

=\frac{\sqrt{1075}}{4\sqrt{13}}

=\frac{5\sqrt{43}}{4\sqrt{13}}

=\frac{5\sqrt{43}\sqrt{13}}{4\sqrt{13}\sqrt{13}}

\sqrt{43}\sqrt{13}=\sqrt{43\cdot \:13}

=5\sqrt{43\cdot \:13}

\mathrm{Multiply\:the\:numbers:}\:43\cdot \:13=559

=5\sqrt{559}

4\sqrt{13}\sqrt{13}

\sqrt{13}\sqrt{13}=13

=4\cdot \:13

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:13=52

=52

=\frac{5\sqrt{559}}{52}

x=\frac{5\sqrt{559}}{52},\:x=-\frac{5\sqrt{559}}{52}

\mathrm{ Hope\ it\ Helps\ You}\\ \mathrm{Eva*}

Similar questions