If (x² - 1) is a factor of ax* + bx + cx
" +
dx + e, show that a + C + e = b + d = 0.
Answers
Answered by
1
Step-by-step explanation:
Since x2 - 1 = (x - 1) is a factor of
p(x) = ax4 + bx3 + cx2 + dx + e
∴ p(x) is divisible by (x+1) and (x-1) separately
⇒ p(1) = 0 and p(-1) = 0
p(1) = a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0
⇒ a + b + c + d + e = 0 ---- (i)
Similarly, p(-1) = a (-1)4 + b (-1)3 + c (-1)2 + d (-1) + e = 0
⇒ a - b + c - d + e = 0
⇒ a + c + e = b + d ---- (ii)
Putting the value of a + c + e in eqn , we get
a + b + c + d + e = 0
⇒ a + c + e + b + d = 0
⇒ b + d + b + d = 0
⇒ 2(b+d) = 0
⇒ b + d = 0 ---- (iii)
comparing equations (ii) and (iii) , we get
a + c + e = b + d = 0
Answered by
1
Answer:
গুঈহ্গ্ফ ই6র্র্গুঈহ
Step-by-step explanation:
উয্ফ্গী ইয্গ্ঘী7ত্রদ ইয্গ্ঘ্হ্হ্হীইযেওয়্দ যত্র্ফ্গু5রদ্দ হ্জ্ঞ্ঘুউ5র্ফ্য্য্ৎ হ্ত্র্ফ্যিজ্গ্ফে উত্ফ্হিউএদ্জ্ঞুয্ফ্স
Similar questions