Math, asked by rishitbaitule, 5 months ago

If x² -1 is a factor of ax⁴+bx³+cx²+dx+e, show that a+c+e=b+d=0

PLEASE ANSWER FAST

Answers

Answered by snehitha2
8

Step-by-step explanation :

Given,

  • x² -1 is a factor of ax⁴+bx³+cx²+dx+e

To prove,

  • a + c + e = b + d = 0

Solution,

Let p(x) = ax⁴+bx³+cx²+dx+e

   

=> x² - 1 is a factor

    x² = 1

    x = √1

    x = ±1

  • When we substitute x = +1, the result is zero.

 Put x = +1,

  p(x) = ax⁴+bx³+cx²+dx+e

  p(1) = a(1)⁴ + b(1)³ + c(1)² + d(1) + e = 0

            a(1) + b(1) + c + d + e = 0

             a + b + c + d + e = 0 ----[ 1 ]

  • When we substitute x = -1, the result is zero.

Put x = -1,

   p(x) = ax⁴+bx³+cx²+dx+e

   p(-1) = a(-1)⁴ + b(-1)³ + c(-1)² + d(-1) + e = 0

              a(1) + b(-1) + c(1) - d + e = 0

              a - b + c - d + e = 0

                 a + c + e = b + d ----[ 2 ]

Substitute [2] in [1],

       a + b + c + d + e = 0

       a + c + e + b + d = 0

          b + d + b + d = 0

            2b + 2d = 0

            2( b + d ) = 0

              b + d = 0/2

              b + d = 0

=> a + c + e = b + d

                   = 0

∴ a + c + e = b + d = 0

Answered by sritarutvik
1

Step-by-step explanation:

given x² -1 is a factor

x² -1 =0

x² =1

x=+or- 1 are factors ax⁴+bx³+cx²+dx+e

let f(x)=ax⁴+bx³+cx²+dx+e

f(-1)=0

a(-1)⁴+b(-1)³+c(-1)²+d(-1)+e=0

a-b+c-d+e=0 .... (1)

a+c+e=b+d

f(1)=0

a(1)⁴+b(1)³+c(1)²+d(1)+e=0

a+b+c+d+e=0

(a+c+e)+(b+d)=0

(b+d)+(b+d)=0 from (1)

2(b+d)=0

b+d=0 (2)

from (1) & (2)

a+c+e=0

therefore,a+c+e=b+d=0

Similar questions
Math, 10 months ago