Math, asked by beingsavage, 19 hours ago

If x2 + 1/x^2 = 66, find the value of x^3 - 1/x^3

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {x}^{2} + \dfrac{1}{ {x}^{2} } = 66 \\

On Subtracting 2, from both sides, we get

\rm \:  {x}^{2} + \dfrac{1}{ {x}^{2} }  - 2= 66  - 2\\

\rm \:  {x}^{2} + \dfrac{1}{ {x}^{2} }  - 2 \times 1= 64\\

\rm \:  {x}^{2} + \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \frac{1}{x} = 64\\

\rm \:  {\bigg(x - \dfrac{1}{x}  \bigg) }^{2}  =  {8}^{2}  \\

\rm\implies \:x - \dfrac{1}{x} \:  =  \:  \pm \: 8 \\

Now, Let Consider

\rm \: x - \dfrac{1}{x} = 8 \\

So, on cubing both sides, we get

\rm \: \bigg(x - \dfrac{1}{x}\bigg)^{3}  =  {8}^{3}  \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } - 3 \times x \times \dfrac{1}{x}\bigg(x - \dfrac{1}{x}  \bigg) = 512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } -3 \times 8 = 512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } -24 = 512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } = 512 + 24 \\

\bf\implies \: {x}^{3} - \dfrac{1}{ {x}^{3} } = 536 \\

Now, Let Consider

\rm \: x - \dfrac{1}{x} = \:  -   \: 8 \\

On cubing both sides, we get

\rm \: \bigg(x - \dfrac{1}{x}\bigg)^{3}  =  {( - 8)}^{3}  \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } - 3 \times x \times \dfrac{1}{x}\bigg(x - \dfrac{1}{x}  \bigg) = -  512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } - 3 \times ( - 8) = -  512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } + 24 = -  512 \\

\rm \:  {x}^{3} - \dfrac{1}{ {x}^{3} } = -  512  - 24\\

\bf\implies \: {x}^{3} - \dfrac{1}{ {x}^{3} }  \: =   \: -  \: 536 \\

Hence,

\bf\implies \:\boxed{ \bf{ \: {x}^{3} - \dfrac{1}{ {x}^{3} }  \: =   \:  \pm  \: 536 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by bijo7979
0

Answer:

Answer: Our required value is 536.

Similar questions