If (x²-1)\x=4 then find (x^6-1)/x³ plz plz plz plz guys help me its very urgent
Answers
Answer:HEY HERE IS YOUR ANSWER ☺☺☺☺
((x - \frac{1}{x}) = 6 \\ \\ {(x \ - \frac{1}{x}) }^{2} = {(6) }^{2} \\ \\ ( {x - \frac{1}{x}) }^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2 \\ \\ {(6)}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2 \\ \\ 36 + 2 = {x}^{2} + \frac{1}{ {x}^{2} } \\ \\ 38 = {x}^{2} + \frac{1}{ {x}^{2} } \: \:
38 = x^2 +1/x^2
(x + \frac{1}{x} ) {}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 38 + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 40 \\ \\ (x + \frac{1}{x} ) = \sqrt{40} \\ \\ (x \ + \frac{1}{x} ) = \sqrt{2 \times 2 \times 2 \times 5 } \\ \\ (x + \frac{1}{x} ) = 2 \sqrt{10}
HOPE IT HELPS ☺☺☺☺☺
PLEASE MARK AS BRAINLIEST
Step-by-step explanation:
Answer:
76
Step-by-step explanation:
Given, (x^2-1)/x=4
or, x-1/x=4
Now, (x^6-1)/(x^3)
=x^3-1/(x^3)
=[x-1/x][^3+3*(x)*(1/x)[x-1/x] using a^3-b^3=(a-b)^3+3ab(a-b)
=4^3+3*4
=64+12
=76