Math, asked by vksfmboy4669, 1 year ago

If x2+(1/x2)=1 find x48+x42+x36+x30+x24+x18+x12+x6+1

Answers

Answered by brainlyashu
4
hope you tag me the brainliest
Attachments:
Answered by aquialaska
5

Answer:

Value of x^{48}+x^{42}+x^{36}+x^{30}+x^{24}+x^{18}+x^{12}+x^6+1\:is\:1

Step-by-step explanation:

Given: x^2+\frac{1}{x^2}=1

To find: x^{48}+x^{42}+x^{36}+x^{30}+x^{24}+x^{18}+x^{12}+x^6+1 ..........(A)

Consider,

x^2+\frac{1}{x^2}=1

x^4+1=x^2

x^4-x^2+1=0 ................(1)

Now, Multiply (1) with x^{44} we get,

x^{48}-x^{46}+x^{44}=0\:\:\implies\:\:x^{48}=x^{46}-x^{44} .........(2)

Now, Multiply (1) with x^{32} we get,

x^{36}-x^{34}+x^{32}=0\:\:\implies\:\:x^{36}=x^{34}-x^{32} .........(3)

Now, Multiply (1) with x^{20} we get,

x^{24}-x^{22}+x^{20}=0\:\:\implies\:\:x^{24}=x^{22}-x^{20} .........(4)

Now, Multiply (1) with x^{8} we get,

x^{12}-x^{10}+x^{8}=0\:\:\implies\:\:x^{12}=x^{10}-x^{8} .........(5)

Put Value from (2) , (3) , (4) , (5) in (A) and using (1) we get

x^{48}+x^{42}+x^{36}+x^{30}+x^{24}+x^{18}+x^{12}+x^6+1

=(x^{46}-x^{44}+x^{42})+(x^{34}-x^{32}+x^{30})+(x^{22}-x^{20}+x^{18})+(x^{10}-x^{8}+x^6)+1

=x^{42}(x^{4}-x^{2}+1)+x^{30}(x^{4}-x^{2}+1)+x^{18}(x^{4}-x^{2}+1)+x^6(x^{4}-x^{1}+1)+1

=x^{42}0)+x^{30}(0)+x^{18}(0)+x^6(0)+1

= 1

Therefore, Value of x^{48}+x^{42}+x^{36}+x^{30}+x^{24}+x^{18}+x^{12}+x^6+1\:is\:1

Similar questions