if x2 + 1/x2 =11 then find the value of x3 -1/x3.
Answers
Answered by
47
Given ⇒
x² + 1/x² = 11
Now, Using the Formula,
(a - 1/a)² = a² + 1/a² - 2
∴ (x - 1/x)² = x² + 1/x² - 2
∴ (x - 1/x)² = 11 - 2
∴ x - 1/x = √9
⇒ x - 1/x = 3
Now,
Using the Formula,
(a - 1/a)³ = a³ - 1/a³ - 3(a - 1/a)
∴ (x - 1/x)³ = x³- 1/x³ - 3(x - 1/x)
∴ (3)³ = x³ - 1/x³ - 3(3)
⇒ 27 = x³ - 1/x³ - 9
⇒ x³ - 1/x³ = 27 + 9
⇒ x³ - 1/x³ = 36
Hence, the value of the x³ - 1/x³ is 36.
Hope it helps.
x² + 1/x² = 11
Now, Using the Formula,
(a - 1/a)² = a² + 1/a² - 2
∴ (x - 1/x)² = x² + 1/x² - 2
∴ (x - 1/x)² = 11 - 2
∴ x - 1/x = √9
⇒ x - 1/x = 3
Now,
Using the Formula,
(a - 1/a)³ = a³ - 1/a³ - 3(a - 1/a)
∴ (x - 1/x)³ = x³- 1/x³ - 3(x - 1/x)
∴ (3)³ = x³ - 1/x³ - 3(3)
⇒ 27 = x³ - 1/x³ - 9
⇒ x³ - 1/x³ = 27 + 9
⇒ x³ - 1/x³ = 36
Hence, the value of the x³ - 1/x³ is 36.
Hope it helps.
Answered by
28
Final Answer :±36
Steps :
1)
2) Case : 1
When
then,
3) Case :2
When
then,
So,
x^3 - 1/x^3 = ±36
Steps :
1)
2) Case : 1
When
then,
3) Case :2
When
then,
So,
x^3 - 1/x^3 = ±36
Similar questions