Math, asked by shreshth38, 4 months ago

IF X²+1/X²=18, THEN THE VALUE OF X+1/X WILL BE?

PLEASE DO NOT SPAM OR WILL BE REPORTED. ​

Answers

Answered by Steph0303
11

Answer:

\text{Given: } x^2 + \dfrac{1}{x^2} = 18\\\\\\\text{To Find: } x + \dfrac{1}{x} = ?\\\\\\\text{Squaring the "To Find" part we get:}\\\\\\\implies (x + \dfrac{1}{x})^2 = x^2 + \dfrac{1}{x^2} + 2\times x\times \dfrac{1}{x}\\\\\\\implies (x + \dfrac{1}{x})^2 = 18 + 2 ( 1 )\\\\\\\implies (x + \dfrac{1}{x})^2 = 20

Taking square root on both sides we get:

\implies (x + \dfrac{1}{x} ) = \sqrt{20} \\\\\implies \boxed{ \bf{(x + \dfrac{1}{x} ) = 2 \sqrt{5}}}

Hence the required answer is 2√5.

Answered by PopularAnswerer01
26

Question:-

If \tt \: { x }^{ 2 } + \dfrac { 1 } { { x }^{ 2 } } = 18 , then the value of \tt \: x + \dfrac { 1 } { x } will be ?

To Find:-

  • Find the value of \tt \: x + \dfrac { 1 } { x }

Solution:-

Given ,

  • \tt \: { x }^{ 2 } + \dfrac { 1 } { { x }^{ 2 } } = 18

\tt\implies \: {( x + \dfrac { 1 } { x } )}^{ 2 } = { x }^{ 2 } + \dfrac { 1 } { { x }^{ 2 } } + 2 \times x \times \dfrac { 1 } {{ x }}

\tt\implies \: {( x + \dfrac { 1 } { x } )}^{ 2 } = 18 + 2( 1 )

\tt\implies \: x + \dfrac { 1 } { x } = \sqrt { 20 }

\implies {\pmb{\red{\sf \: x +  \dfrac{ \: 1 \: }{ \: x \: }  = 2 \sqrt{5}  }}}

Similar questions