Math, asked by sony3052, 10 months ago

If x2 +1/x2 =2 then x2-1/x2 = ?

Answers

Answered by Anonymous
12

Answer:

\large\bold\red{0}

Step-by-step explanation:

Given,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2 \\   =  >  {(x)}^{2} +  {( \frac{1}{x} )}^{2} = 2

Now,

We know that,

 {a}^{2}  +  {b}^{2}  =  {(a  -  b)}^{2}   +  2ab

Therefore,

We get,

 =  >  {(x  -   \frac{1}{x} )}^{2}   +  2 \times x \times  \frac{1}{x}  = 2 \\   =  >  {(x  -   \frac{1}{x}) }^{2}   +  2 = 2 \\  =  >  {(x  -   \frac{1}{x} )}^{2}  = 2  -  2  \\  =  >  {(x  -  \frac{1}{x}) }^{2}  = 0 \\  =   > x -  \frac{1}{x}  = 0 \\  =  > x =  \frac{1}{x}  \:  \:  \:  \:  \: ........(i)

Now,

We have to find,

 {x}^{2} -  \frac{1}{ {x}^{2} }

But from Equation (i),

We have,

x =  \frac{1}{x}

Therefore,

Putting the value,

We get,

 =   {( \frac{1}{x} )}^{2}  -  \frac{1}{ {x}^{2} }  \\  =  \frac{1}{ {x}^{2} } -  \frac{1}{ {x}^{2} }   \\  = 0

Hence,

O is the required answer.

Answered by Shubhendu8898
15

Answer: 0

Step-by-step explanation:

Given,

x^2+\frac{1}{x^2}=2

We know that by using,

(a - b)² = a² + b² + 2ab

We have,

(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2\times x\times\frac{1}{x}\\\;\\(x-\frac{1}{x})^2=2-2\\\;\\(x-\frac{1}{x})^2=0\\\;\\x-\frac{1}{x}=0

Now,

(x^2-\frac{1}{x^2})=(x+\frac{1}{x})(x-\frac{1}{x})\;\;\;\;\;\;\;\;\;[\because a^2-b^2=(a+b)(a-b)]

(x^2-\frac{1}{x^2})=(x+\frac{1}{x})\times 0\\\;\\(x^2-\frac{1}{x^2})=0

Similar questions