Math, asked by gcjtdcgyvkhvh, 9 months ago

If x2 + 1/ x2=23, evaluate( i) x+ 1/ x ( ii)x-1/x​

Answers

Answered by Anonymous
6

Given: x² + 1/x² = 23

Formula used:

  • (a+b)²=a²+2ab+b²
  • (a-b)²=a²-2ab +b²

Solutions:

( i ) x + 1/x

 \rightarrow( x + \frac{1}{x} ) {}^{2}  = x {}^{2}  + 2 \times x \times  \frac{1}{x  }   + \frac{1}{x {}^{2} }

 \rightarrow(x +  \frac{1}{x} ) {}^{2}  = x {}^{2}  + 2 +  \frac{1}{ {x}^{2} }

 \rightarrow \: (x +  \frac{1}{x} ) {}^{2}  = 23+ 2

 \rightarrow \: (x +  \frac{1}{x} ) {}^{2} = 25

 \rightarrow \: (x +  \frac{1}{x} ) {}^{2}  = 25

 \rightarrow \: x +  \frac{1}{x}  =    \sqrt{25}

 \rightarrow \: x +  \frac{1}{x}  = 5

(ii) x - 1/x

 \rightarrow \: (x -  \frac{1}{x} ) {}^{2}  =  {x}^{2}  - 2 \times x \times  \frac{1}{x} + ( \frac{1}{x}  ) {}^{2}

 \rightarrow \: (x -  \frac{1}{ {x}} )  {}^{2} =  {x}^{2}  - 2 +  \frac{1}{ {x}^{2} }

 \rightarrow \: (x -  \frac{1}{x} ) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

 \rightarrow \: (x -  \frac{1}{x} ) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

 \rightarrow \: (x -  \frac{1}{x} ) {}^{2}  = 23- 2

 \rightarrow \: (x  -  \frac{1}{x} ) {}^{2}  = 21

 \rightarrow \: x -  \frac{1}{x}  =  \sqrt{21}

Extra:

  • ( a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a+b)³ = a³ + b³ + 3ab(a+b)

  • (a-b)³ = a³ - b³ - 3ab(a-b)

  • (a³+b³) = (a+b) (a²- ab + b²)

  • (a³-b³) = (a-b) (a²+ ab + b²)
Answered by silentlover45
0

Given:

x² + 1/x² = 23

Formula used:

• (a + b)² = a² + 2ab + b²

• (a - b)² = a² - 2ab + b²

Solutions:

(1) (x + 1/x)

(x + 1/x)² = x² + 2 + 1/x²

(x + 1/x)² = x² + 2 + 1/x²

(x + 1/x)² = 23 + 2

(x + 1/x)² = 25

x + 1/x = √25

x + 1/x = 5

(2) (x - 1/x)

(x - 1/x)² = x² - 2 + 1/x + (1/x)²

(x - 1/x)² = x² - 2 + 1/x²

(x - 1/x)² = x² + 1/x² - 2

x - 1/x = 23 - 2

x - 1/x = 21

x - 1/x = √21

Extra:

• (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

• (a + b)³ = a³ + b³ + 3ab(a + b)

• (a - b)³ = a³ - b³ + 3ab(a - b)

• (a³ + b³) = (a + b)(a² - ab + b²)

• (a³ + b³) = (a - b)(a² + ab + b²)

silentlover45.❤️

Similar questions