If x2 + 1/ x2=23, evaluate( i) x+ 1/ x ( ii)x-1/x
Answers
Answered by
6
Given: x² + 1/x² = 23
Formula used:
- (a+b)²=a²+2ab+b²
- (a-b)²=a²-2ab +b²
Solutions:
( i ) x + 1/x
(ii) x - 1/x
Extra:
- ( a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a+b)³ = a³ + b³ + 3ab(a+b)
- (a-b)³ = a³ - b³ - 3ab(a-b)
- (a³+b³) = (a+b) (a²- ab + b²)
- (a³-b³) = (a-b) (a²+ ab + b²)
Answered by
0
Given:
x² + 1/x² = 23
Formula used:
• (a + b)² = a² + 2ab + b²
• (a - b)² = a² - 2ab + b²
Solutions:
(1) (x + 1/x)
(x + 1/x)² = x² + 2 + 1/x²
(x + 1/x)² = x² + 2 + 1/x²
(x + 1/x)² = 23 + 2
(x + 1/x)² = 25
x + 1/x = √25
x + 1/x = 5
(2) (x - 1/x)
(x - 1/x)² = x² - 2 + 1/x + (1/x)²
(x - 1/x)² = x² - 2 + 1/x²
(x - 1/x)² = x² + 1/x² - 2
x - 1/x = 23 - 2
x - 1/x = 21
x - 1/x = √21
Extra:
• (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
• (a + b)³ = a³ + b³ + 3ab(a + b)
• (a - b)³ = a³ - b³ + 3ab(a - b)
• (a³ + b³) = (a + b)(a² - ab + b²)
• (a³ + b³) = (a - b)(a² + ab + b²)
silentlover45.❤️
Similar questions