Math, asked by deva3398, 1 year ago

If X2+1/x2=23, then find the Value of X+1/x and X3+1/X3​

Answers

Answered by ItsPayalYadav
20

Answer:

x + 1/x = 5

x³ + 1/x³ = 110

Step-by-step explanation:

Given :  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 23

First, we have to find x +  \dfrac{1}{x} .

Squaring of x +  \dfrac{1}{x} , we get

 {(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2.x. \dfrac{1}{x}

[Identity used : (a + b)² = + + 2ab]

Putting known values, we get

 {(x +  \dfrac{1}{x} )}^{2}  = 23 + 2

 {(x +  \dfrac{1}{x}) }^{2}  = 25

x +  \dfrac{1}{x}  =  \sqrt{25}

x +  \dfrac{1}{x}  = 5

Now,

Cubing of x +  \dfrac{1}{x} , we get

 {(x +  \dfrac{1}{x} )}^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3.x. \dfrac{1}{x} (x +  \dfrac{1}{x} )

[Identity used : (a + b)³ = + + 3ab(a + b)]

Putting known values, we get

 {(5)}^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3(5)

125 =  {x}^{3}  +  \dfrac{1}{ {x}^{3} } + 15

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 125 - 15

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 110

Similar questions