Math, asked by elistha, 1 year ago

If x2+1/x2=27 find the value of x+1/x

Answers

Answered by Anonymous
431
x²+1/x² = 27
(x)²+(1/x)²+2(x)(1/x) = 29

using formula ,
a²+b²+2ab = (a+b)²


(x+1/x)² = 29
x+1/x = √29



hope this helps
Answered by mysticd
211

Answer:

Value of  x+\frac{1}{x}=±\sqrt{29}

Explanation:

Given x^{2}+\frac{1}{x^{2}}=27

\implies x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}\\=27+2\times x \times \frac{1}{x}

\implies x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}\\=27+2

\implies \left(x+\frac{1}{x}\right)^{2}=29

___________________________

By algebraic identity:

\boxed {a^{2}+2ab+b^{2}=(a+b)^{2}}

___________________________

\implies x+\frac{1}{x}=±\sqrt{29}

Therefore,

Value of  x+\frac{1}{x}=±\sqrt{29}

•••••

Similar questions