if x² + 1/x² = 27, find x² - 1/x²
Answers
GIVEN :–
• x² + 1/x² = 27
TO FIND :–
• Value of x² - 1/x² = ?
SOLUTION :–
• We know that –
➪ (a+b)² = a² + b² + 2ab
⇒ (x + 1/x)² = x² + 1/x² + 2(x)(1/x)
⇒ (x + 1/x)² = 27 + 2
⇒ (x + 1/x)² = 29
⇒ x + 1/x = √29 _____________eq.(1)
• We also know that –
➪ (a-b)² = a² + b² - 2ab
⇒ (x - 1/x)² = x² + 1/x² - 2(x)(1/x)
⇒ (x - 1/x)² = 27 - 2
⇒ (x - 1/x)² = 25
⇒ x - 1/x = √25
⇒ x - 1/x = ±5 _____________eq.(2)
• One more identity to use –
➪ (a-b)(a+b) = a² - b²
• Now multiply eq.(1) & eq.(2) –
⇒ (x + 1/x)(x - 1/x) = ±5(√29)
⇒ x² - 1/x² = ±5√29
▪︎ Hence , The Value of x² - 1/x² is ±5√29.
Answer:
GIVEN :–
• x² + 1/x² = 27
TO FIND :–
• Value of x² - 1/x² = ?
SOLUTION :–
• We know that –
➪ (a+b)² = a² + b² + 2ab
⇒ (x + 1/x)² = x² + 1/x² + 2(x)(1/x)
⇒ (x + 1/x)² = 27 + 2
⇒ (x + 1/x)² = 29
⇒ x + 1/x = √29 _____________eq.(1)
• We also know that –
➪ (a-b)² = a² + b² - 2ab
⇒ (x - 1/x)² = x² + 1/x² - 2(x)(1/x)
⇒ (x - 1/x)² = 27 - 2
⇒ (x - 1/x)² = 25
⇒ x - 1/x = √25
⇒ x - 1/x = ±5 _____________eq.(2)
• One more identity to use –
➪ (a-b)(a+b) = a² - b²
• Now multiply eq.(1) & eq.(2) –
⇒ (x + 1/x)(x - 1/x) = ±5(√29)
⇒ x² - 1/x² = ±5√29
▪︎ Hence , The Value of x² - 1/x² is ±5√29.