Math, asked by ss8730105, 1 year ago

if x²+ 1/x²=34 find x³+1/x³

Answers

Answered by Mankuthemonkey01
9
x² + 1/x² = 34

Add 2(x)(1/x) on both sides

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} ) = 34 + 2(x)( \frac{1}{x})
 =  > (x +  \frac{1}{x} ) {}^{2}  = 34 + 2 \\  \\  =  > (x +  \frac{1}{x} ) {}^{2}  = 36   \\  \\  =  > x +  \frac{1}{x}  =  \sqrt{36}  \\  \\  =  > x +  \frac{1}{x}  = 6


We know that


 {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  - (x)( \frac{1}{x} ))


 =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = (6)(34 - 1) \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 6 \times 33 \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198

ss8730105: Thanks
Mankuthemonkey01: Welcome ❤️
Similar questions