Math, asked by Anonymous, 6 months ago

If x² + 1/x² = 38, find the value of: x4 + 1/x4.​

Answers

Answered by chauhanaaditya43
14

Answer:

thanks and I also give the explanation of formula which I used

Attachments:
Answered by BrainlyPopularman
24

GIVEN :

 \\ \implies \bf {x}^{2} +  \dfrac{1}{ {x}^{2} } = 38 \\

TO FIND :

 \\ \implies \bf {x}^{4} +  \dfrac{1}{ {x}^{4} } =?\\

SOLUTION :

 \\ \implies \bf {x}^{2} +  \dfrac{1}{ {x}^{2} } = 38 \\

• Square on both sides –

 \\ \implies \bf  \bigg({x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg)^{2}  =(38)^{2}  \\

 \\ \implies \bf  \bigg({x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg)^{2}  =1444 \\

• Using identity –

 \\ \implies \large\pink{ \boxed{\bf  (a + b)^{2}  = {a}^{2}   +  {b}^{2} + 2ab}}\\

• So that –

 \\ \implies \bf   {({x}^{2})}^{2} +  \bigg(\dfrac{1}{ {x}^{2} } \bigg)^{2}   + 2( {x}^{2})\bigg(\dfrac{1}{ {x}^{2} } \bigg)=1444 \\

 \\ \implies \bf  {x}^{4} +\dfrac{1}{ {x}^{4} }+ 2 \cancel{( {x}^{2})}\bigg(\dfrac{1}{ \cancel{ {x}^{2} }} \bigg)=1444 \\

 \\ \implies \bf  {x}^{4} +\dfrac{1}{ {x}^{4} }+ 2=1444 \\

 \\ \implies \bf  {x}^{4} +\dfrac{1}{ {x}^{4} }=1444 - 2 \\

 \\ \implies \large \red { \boxed{\bf  {x}^{4} +\dfrac{1}{ {x}^{4} }=1442 }}\\

Similar questions