Math, asked by rockstarr18, 1 year ago

If x2+1/x2= 38..then find the value of x-1/x

Answers

Answered by Swarup1998
5

The value of x-\dfrac{1}{x} is \pm 6.

Tips:

Before we solve the problem, let us know some algebraic identities:

  • a^{2}+b^{2}=(a-b)^{2}+2ab
  • a^{2}+b^{2}=(a+b)^{2}-2ab
  • a^{2}-b^{2}=(a+b)(a-b)

Step-by-step explanation:

Given, x^{2}+\dfrac{1}{x^{2}}=38

\Rightarrow (x)^{2}+(\dfrac{1}{x})^{2}=38

\Rightarrow (x-\dfrac{1}{x})^{2}+2\times x\times\dfrac{1}{x}=38

  • Hint. Used the formula a^{2}+b^{2}=(a-b)^{2}+2ab

\Rightarrow (x-\dfrac{1}{x})^{2}+2=38

\Rightarrow (x-\dfrac{1}{x})^{2}=38-2=36

  • Hint. Transposing 2 to the right hand side

\Rightarrow (x-\dfrac{1}{x})^{2}=6^{2}

\Rightarrow \boxed{x-\dfrac{1}{x}=\pm 6}

  • Hint. Taking square root of both sides
Similar questions