Math, asked by kashvikalra613, 4 months ago

If x² + 1/ x² = 38 then find the value of x³- 1/ x³​

Answers

Answered by SuitableBoy
83

{\large{\underbrace{\underline{\bf{Required\;Answer:-}}}}}

 \\

» We Know :

 \\

  •  \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 38 \:   \dots(i)

 \\

» Finding \bf x-\dfrac{1}{x} :

 \\

 \displaystyle \colon \rarr \:  \:  \sf \bigg (x -  \frac{1}{x} \bigg ) {}^{ {}^{ \displaystyle2} }  =  {x}^{2}  +  \frac{1}{ {x}^{2} }   -  2( \cancel{x}) \bigg( \frac{1}{ \cancel{x}}  \bigg) \\  \\

  • From equation (i) , \tt x^2+\dfrac{1}{x^2}=38

  \\ \colon \rarr \:  \:  \sf  \bigg(x -  \dfrac{1}{x}  \bigg) {}^{ {}^{ \displaystyle2} }  = 38  -  2 \\  \\

 \colon \rarr \:  \sf \:  \bigg(x -  \dfrac{1}{x}  \bigg) {}^{ {}^{ \displaystyle2} }  = 36 \\  \\

 \colon \rarr \:  \sf \:  \bigg(x -  \dfrac{1}{x}  \bigg) =  \sqrt{36}  \\  \\

 \colon \rarr  \:  \sf \:  \boxed{ \bigg( \bf x -  \dfrac{1}{x}  \bigg) =  6}  \dots(ii) \\  \\

» Now :

 \\

Using the formula -

 \quad \quad \quad \star \boxed{  \tt {a}^{3} -  {b}^{3}   = (a - b)( {a}^{2} +  {b}^{2}   + ab)}

Put -

  • a = x
  • b = \sf\dfrac{1}{x}

 \\

 \colon \implies \sf \:  {x}^{3}  -  \dfrac{1}{ {x}^{3} }   = \underline{  \bigg(x -  \dfrac{1}{x} \bigg)  }\bigg \{ \underline{ {x}^{2}  +  \frac{1}{ {x}^{2} } } +  ( \cancel{x}) \bigg( \frac{1}{ \cancel{x}}  \bigg) \bigg \} \\  \ \\

  • From equation (i) , \tt x^2+\dfrac{1}{x^2}=38

  • From equation (ii) , \tt x-\dfrac{1}{x}=6

  \\  \colon \implies \:  \sf\:  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 6 \times (38 + 1) \\  \\

 \colon \implies \:  \sf \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 6 \times 39 \\  \\

 \colon \dashrightarrow \underline{ \boxed{ \bf{ {x}^{3}  -  \frac{1}{ {x}^{3} }  = 234}}} \\  \\

So,

» Final Answer :

★ The value of \bf x^3-\dfrac{1}{x^3} would be 234 .

 \\  \\

_____________________________

Similar questions