Math, asked by chhayagupta0912, 6 months ago

if x²+1/x²=3find the value of x + 1/x​

Answers

Answered by Asterinn
4

Given :

  \large\sf {x}^{2}  +  \dfrac{1}{  {x}^{2}  }  = 3

To find :

\large\sf {x}  +  \dfrac{1}{  {x}  }

Formula used :

 \bf {(a  + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

Solution :

 \implies\sf {x}^{2}  +  \dfrac{1}{  {x}^{2}  }  = 3

We know :-

 \sf{({x}  +  \dfrac{1}{  {x}  } )}^{2}  =  {x}^{2}  +  {(\dfrac{1}{  {x}  })}^{2}  + 2 \times (x )\times (\dfrac{1}{  {x}  })

 \implies\sf{({x}  +  \dfrac{1}{  {x}  } )}^{2}  =  {x}^{2}  +  {\dfrac{1}{  {x}^{2}  }}  + 2

\implies\sf{({x}  +  \dfrac{1}{  {x}  } )}^{2}  = 3  + 2

\implies\sf{({x}  +  \dfrac{1}{  {x}  } )}^{2}  = 5

\implies\sf{{x}  +  \dfrac{1}{  {x}  } }  =  \sqrt{5}

Answer :

\sqrt{5}

______________________

\large\bf\blue{Additional-Information}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

Similar questions