Math, asked by yashrajawasthi12, 3 months ago

If x2+1/x2=5 then find the value of x+1/x​

Answers

Answered by AritraKz22
2

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

 {x}^{2}  +    \frac{1}{ {x}^{2} }  = 5

 \underline \mathbb{TO  \: FIND:-}

x +  \frac{1}{x}

  \underline \mathbb{FORMULA:-}

 {(x +  \frac{1}{ {x} } )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times  \cancel{x \times  \frac{1}{x} } \\  \\  \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

{x}^{2}  +    \frac{1}{ {x}^{2} }  = 5

Add two in both the terms.

{x}^{2}  +    \frac{1}{ {x}^{2} } + 2  = 5 + 2 \\  \\  \implies \:  {(x +  \frac{1}{x} )}^{2}  = 7 -  - (By \:  Formula)\\  \\  \implies \:(x +  \frac{1}{x} ) =  \sqrt{7}

\underline \mathbb{ANSWER:-}

 \\   {\implies \boxed{\:(x +  \frac{1}{x} ) =  \sqrt{7}}}

Similar questions