If x2 + 1/x2 = 51, find x3-1/x3
Answers
Answered by
42
GivEn:
- x² + 1/x² = 51
To find:
- x³ - 1/x³
Solution:
⟶ x² + 1/x² = 51
⟶ (x - 1/x)² = x² + 1/x² - 2
⟶ (x - 1/x)² = 51 - 2
⟶ (x - 1/x)² = 49
⟶ (x - 1/x) = √49 = 7
___________________
Now, As we know that,
- a³ - b³ = (a - b)(a² + ab + b²)
Here,
- a = x
- b = 1/x
Substituting the values.
⟶ x³ - 1/x³ = (x - 1/x)(x² + x(1/x) + 1/x²)
By cancelling x,
⟶ x³ - 1/x³ = 7(x² + (1) + 1/x²)
⟶ x³ - 1/x³ = 7(x² + 1/x² + 1)
⟶ x³ - 1/x³ = 7(51 + 1)
⟶ x³ - 1/x³ = 7(52)
⟶ x³ - 1/x³ = 364
∴ Hence, The value of x³ - 1/x³ is 364.
Similar questions