Math, asked by Krity57, 9 months ago

If x2 + 1/x2 = 6 then find x ^4 + 1/x^4 ​

Answers

Answered by sivaramalingam2016
3

Step-by-step explanation:

help full for you......

Attachments:
Answered by Anonymous
18

{ \bf{ \underline{ \blue{ \underline{ \blue{ Given}}}}  :  - }}

 \\ \:  \sf \: { \huge{.}} \:\:  {x}^{2}  +  \dfrac{1}{ {x}^{2}}  = 6 \\

{ \bf{ \underline{ \blue{ \underline{ \blue{ To -Find}}}}  :  - }}

 \\ \:  \sf \: { \huge{.}} \:\:Value \:  \: of \:  \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }=? \\

\sf\blue{Formula  \ to \ be \ used:-}

• ( a + b)² = a² + b² + 2ab

{ \bf{ \underline{ \blue{ \underline{ \blue{ Solution }}}}  :  - }}

 \\ \sf \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2}}  = 6 \\

( Squaring on both sides)

 \\ \sf \implies \left \{ {x}^{2}  +  \dfrac{1}{ {x}^{2}} \right \}^{2}  =  {(6)}^{2}  \\

Here,

 \\ \sf \implies  {x}^{4}  +  \dfrac{1}{ {x}^{4} } + 2( {x}^{4}) \left( \dfrac{1}{ {x}^{4} }  \right) =  {(6)}^{2}  \\

 \\ \sf \implies  {x}^{4}  +  \dfrac{1}{ {x}^{4} } + 2 (  \cancel{{x}^{4}}) \left( \dfrac{1}{  \cancel{{x}^{4}} }  \right) = 36  \\

 \\ \sf \implies  {x}^{4}  +  \dfrac{1}{ {x}^{4} } + 2 = 36  \\

 \\ \sf \implies  {x}^{4}  +  \dfrac{1}{ {x}^{4} } = 36 - 2  \\

 \\ \dashrightarrow  \:  \: { \sf {x}^{4}  +  \dfrac{1}{ {x}^{4} } = 34 } \\

\small{\underline{\sf{\blue{Hence-}}}}

 \\ \dashrightarrow  \:  \: { \sf {x}^{4}  +  \dfrac{1}{ {x}^{4} } = 34 } \\

____________________________________________

Some more identities :-

•x² – y²= (x – y) (x + y)

•(x +y)² = a² + 2xy + y²

•x² + y² = (x + y)² – 2xy

•(x – y)² = x² – 2xy + y²

•(x + y + z)²

= x² + y² + z² + 2xy + 2yz + 2zx

•(x – y – z)²

= x² + y² + z² – 2xy + 2yz – 2zx

•(x + y)³ = x³ + 3x²y + 3xy² + y³

Similar questions