If x²+1/x²=66, find the value of (I)x³-1/x³(ii)x⁶-1/x⁶
Answers
Solution 1 :-
→ x² + 1/x² = 66
Subtracting 2 both sides ,
→ x² + 1/x² - 2 = 66 - 2
→ x² + 1/x² - 2 * x * 1/x = 64
comparing with a² + b² - 2ab = (a - b)² now,
→ (x - 1/x)² = 8²
Square root both sides,
→ (x - 1/x) = 8
Therefore,
→ (x³ - 1/x³)
using a³ - b³ = (a - b)(a² + b² + ab)
→ (x - 1/x)(x² + 1/x² + 1)
→ 8 * (66 + 1)
→ 8 * 67
→ 536 (Ans.)
________________________
Solution 2 :-
→ x² + 1/x² = 66
Adding 2 both sides ,
→ x² + 1/x² - 2 = 66 + 2
→ x² + 1/x² + 2 * x * 1/x = 68
comparing with a² + b² + 2ab = (a + b)² now,
→ (x + 1/x)² = 68
Square root both sides,
→ (x + 1/x) = √68 = 2√17
Therefore,
→ (x³ + 1/x³)
using a³ + b³ = (a + b)(a² + b² - ab)
→ 2√17 * (66 - 1)
→ 2√17 * 65
→ 130√17
Hence,
→ (x⁶-1/x⁶)
→ (x³)² - (1/x³)²
using (a² - b²) = (a + b)(a - b)
→ (x³ + 1/x³)(x³ - 1/x³)
Putting both values now,
→ 130√17 * 536
→ 69,680√17 (Ans.)