Math, asked by ayushman4170, 1 year ago

If X²+1/x²=7
Find the value of 3x²-3/x²

Answers

Answered by HarishAS
6

Answer: ±9√5

Step-by-step explanation:

\tt Given: \\ \\ x^2 +\dfrac{1}{x^2} = 7  \\ \\ To\ Find: 3x^2 - \dfrac{3}{x^2} \\ \\ Adding\ 2 \ to\ both\ the\ side\ of\ the\ given\ equation\ : \\ \\ x^2 + \dfrac{1}{x^2}+2=9 \\ \\ \implies \Big(x + \dfrac{1}x\Big)^2 = 3^2 \\ \\ \implies \Big(x + \dfrac{1}x\Big) = \pm 3\\ \\ Similarly \ subtracting\ 2\ both\ sides\ we\ get: \\ \\ \Big(x - \dfrac{1}x\Big) = \pm \sqrt{5} \\ \\ \\ \Big(3x^2 - \dfrac{3}{x^2}\Big) = 3\Big(x + \dfrac{1}x\Big)\Big(x - \dfrac{1}x\Big) = \pm 9\sqrt{5}

Answered by madhuranjan10121988
8

Step by step explanation:

 {x}^{2}  +  \frac{1}{ {x}^{2} }   = 7

 {(x  +  \frac{1}{x}) }^{2}   -  2x \times  \frac{1}{x}  = 7

 {(x +  \frac{1}{x} )}^{2}    = 9

x +  \frac{1}{x}  = 3

 {(x -  \frac{1}{x} )}^{2}  + 2x \times  \frac{1}{x}  = 7

 {(x -  \frac{1}{x} )}^{2}  = 5

x -  \frac{1}{x}  =  \sqrt{5}

A/q,

3 {x}^{2}  -  \frac{3}{ {x}^{2} }   \\

3( {x}^{2}  -  \frac{1}{ {x}^{2} } )

3(x +  \frac{1}{x} )(x -  \frac{1}{x} )

3 \times 3 \times  \sqrt{5}  = 9 \sqrt{5}

Hope it helps...

Please mark me as a BRAINLIST...

Similar questions