Math, asked by sctkunal07, 19 days ago

if x²+¹/x²=7. find the value of x³+¹/x³​

Attachments:

Answers

Answered by abhinabakayal
2

Answer:

±18

Step-by-step explanation:

x^{3} +\frac{1}{x^{3} } \\\\ = ( x +\frac{1}{x} )(x^{2} -x.\frac{1}{x} +\frac{1}{x^{2} }  )\\\\=  ( x +\frac{1}{x} )(7 -1 )since  (x^{2} +\frac{1}{x^{2} }) =7\\

=6(x +\frac{1}{x} )

now,

(x^{2} +\frac{1}{x^{2} }) =7\\\\

(x +\frac{1}{x})^{2}  - 2x.\frac{1}{x}  =7\\\\

(x +\frac{1}{x})^{2}  - 2 =7\\\\

(x +\frac{1}{x})^{2}  =9\\\\

(x +\frac{1}{x})=±3

Hence, final answer is

x^{3} +\frac{1}{x^{3} }  = ± 18

Similar questions